
An Algorithm for Mining Large Sequences in Databases

Communications of the IBIMA

Volume 6, 2008

149

An Algorithm for Mining Large Sequences in Databases

Bharat Bhasker, Indian Institute of Management, Lucknow, India, bhasker@iiml.ac.in

ABSTRACT

Frequent sequence mining is a fundamental and

essential operation in the process of discovering the

sequential rules. Most of the sequence mining

algorithms use apriori methodology or build the

larger sequences from smaller patterns, a bottom-up

approach. In this paper, we present an algorithm that

uses top-down approach for mining long sequences.

Our algorithm defines dominancy of the sequences

and uses it for minimizing the scanning of the data

set.

Keywords: Sequential Patterns, Data Mining, Large

Sequence Mining

1 Introduction

The sequential pattern mining problem [1,2,3,4,5]

introduced by Agrawal and Srikant [1] has been of

great interest for researchers as it has a very wide

scope of applications spanning from the predicting

the customer purchase patterns, and scientific

discoveries.

For example, given a time stamped sequences of

purchases made by customers, where each event is

made up of list of items purchased at the same

timestamp by a customer. The objective of the

sequential pattern mining algorithm is to discover all

the frequent sequences. A sequence is called a

frequent sequence provided it occurs more frequently

than the minimum support specified by users.

There are several heuristics such as GSP[1], SPADE

[3], PrefixSpan [2] and the SPIRIT [4] that try to

discover the frequent patterns in a efficient manner

by trying to prune a large number of subsequences

and thus reduce the search space. The GSP algorithm

[1] uses the anti-monotone property (all

subsequences of a frequent sequence are also

frequent). The SPADE finds frequent sequences

using the lattice search [3] and intersection based

approach. In this approach the sequence database is

transformed to a vertical format. The candidate

sequences are divided in groups. The frequent

sequences are enumerated in SPADE using both

methods – breadth first and depth first methods. The

support is counted for the generated sequences. The

basic approach of te above three algorithm can be

classified as the candidate-generation followed by

support evaluation. The PrefixSpan [2] algorithm

follows a pattern growth method. It uses projected

databases for achieving this. Prefix is Projected

Sequential Pattern mining. It examines prefix

subsequences and projects the postfix subsequences

into the databases.

2 Model & Notation:

Based on the Agrawal and Srikant[1], a sequence is

an ordered set of events, denoted by (s 1 , s 2 , s 3 , …

, s n) where s j is an event. Each event , also

referred to as an itemset, is a non-empty, unordered,

finite set of items, denoted by (i 1 , i 2 , i 3 ,….., i n)

where i j is an item. The length of a sequence is the

number of items present in the sequence. A sequence

of length k is called a k-sequence. A sequence X

denoted by (x 1 , x 2 , x 3 ,….., x n) is said to be a

subsequence of another sequence Y denoted by (y1 ,

y 2 , y 3 ,….., y n) if x 1 ⊆ y
1i
, x 2 ⊆ y

2i
, …..,

x n ⊆ y
ni

 where i 1 , i 2 , i 3 ,….., i n are integers

such that i 1 <i 2 < i 3 <…..< i n . The sequence Y is

said to contain the sequence X if X is a subsequence

of Y. The sequence database S is a set of the form

(cid, s) where cid, is the customer-id and s is the

sequence. Let min-support be the user defined

support, a sequence that occur more frequently than

min-support is called frequent sequence. A maximal

sequence is the one that is not a subsequence of any

other frequent sequence.

We define dominancy of an event e consisting of

items (i1, i2, …, ik) as ED =Max (sup(i1), sup(i2),..

sup(ik)), where sup(i) is the frequency of occurece of

item i. And, the dominancy factor of a sequence si,

denoted by DFi, as the sum dominancy of individual

events that appear in the sequence. For a sequence s

= {xl | l = 1, 2….Ni ; xl ∈ s }, DFi = ∑l=1
Ni

 ED (xl),

∀xl ∈Ti.

The algorithm proposed in this work utilizes the

dominancy factors for pruning the search. Thus,

during the preprocessing, we sort the entire dataset

based on descending order of DF as shown in the

table 1. By performing such transformations to the

Bharat Bhasker

Communications of the IBIMA

Volume 6, 2008

150

initial dataset, we bring the dominant transactions i.e.

those transactions that have longer potentially

frequent patterns, to the top in order to mine the long

patterns efficiently.

Table -1: Sequence Data set

CId Sequence Dominancy

C1 cg(af)cbc 4+1+Max(4,2)+4+4+4=21

C2 (cf)(ab)(df)cbe 20

C3 a(abc)(ac)d(cf) 19

C4 (ad)c(bc)(ac) 16

Sup(a) = 4, sup(b)= 4, sup(c)=4 sup(d)=3

sup(e)=1 sup(f)=2 sup(g)=1

In a dataset sorted based on descending order of DF,

for a sequence X to be present in a sequence Ci, it

should satisfy the property DF (X) ≤ DFi. So, as we

are walking down the data set, we can determine a

point beyond which a sequence, X, would not exists.

For example in table 1, for the sequence = (c->a->b-

>a->c) the dominancy factor, computes to the value

of 20. Hence, in this case, we need to scan till C2

only as the DF2 = 20. So, we define a point beyond

which a sequence X of size k would not exist as the

Maximum Depth of Traversal (MDTk) for a k-

sequence, Xk. A point beyond which any sequence of

size k will not exist is defined as MaxMDTk.

In other words, the dataset or transaction list, D, is an

ordered set of quadruplet Q,

D = {<Qi> | DFi ≥ DFi+1 } where <Qi> = {(Si, Ni,

DFi, Supi) | i = 1, 2,….L; Si is the ith customer

sequence; Ni is the number of events in Si; DFi =

∑l=1
Ni

 ED(xl); Supi = Sup (Si);} Where L is the total

number of sequences in the dataset.

The preprocessed dataset with the sorted transaction

list has several properties that can be used for pruning

the search space. These properties are as follows.

Property 1:

A candidate k-sequence, Xk ⊄ Si ∀Si > MDTk. In

other words, a candidate sub sequence Xk is

definitely not a subset of sequence Si beyond the

Maximum Depth of Traversal, MDTk of the

candidate, Xk.

Since, the customer sequences in the dataset, D are

sorted on descending order of DFi, we can identify a

point at which DFi < DF (Xk). Further, the dominancy

factor is just the sum of supports of individual items

in a transaction list (DFi). So, for a sequence to be

present in a transaction, its total sum of supports or

the dominancy factor should be more than the sum of

supports of the subset to be evaluated DF (Xk).

Property 2:

For an sequence Xk to be frequent, the upper bound

of the support should be at least equal to the user

defined minimum support, minsupport. This property

is used to prune infrequent sequences even before

adding the sequence to the sequence tree. The

duplicate transactions are combined together in the

preprocessing step and the support (supi) is

incremented for the i
th

 sequence appropriately. Thus,

the support upper bound on support can be computed

as follows.

Upper bound (Xk) = ∑
MDTk

m=fk (Supm)

If Xk ∈ ℑ, then minsupport ≤ upper bound (Xk)

Otherwise Xk ∉ℑ.

As each and every item in a sequence is distinct, any

candidate sequence can occur at-most as many times

as the support of a particular sequence. As per the

property 1, any sequence Xk cannot exist beyond its

MDTk. So, once we know MDTk and the sequence’s

first occurrence in data set, D, i.e. Sfk, we can

ascertain the upper bound of the support by summing

up the support of all sequences between these two

points

Property 3: Reverse Apriory Principle

All subsequence of a maximal sequence are frequent

and hence need not be evaluated for generating

maximal sets.

Property 4: Apriori Principle

All supersets of an infrequent sequence are infrequent

and hence need not be evaluated.

3 VARIOUS PHASES OF OUR ALGORITHM

Our algorithm follows top-down approach for mining

the maximal sets. The frequent sequences are divided

in two categories- one with repeated items and other

with non-repeated items. The different phases of the

algorithm are as follows:

Pre-Processing Phase

During this phase, we prepare the data and organize it

in the form of sequence list described in the earlier

section. The original sequence database is scanned.

During the scan we count the support for all the 1-

An Algorithm for Mining Large Sequences in Databases

Communications of the IBIMA

Volume 6, 2008

151

sequence and 2-seqences. The sequence list

transformation requires that all the duplicate

sequences are collapsed together and the support

value reflects the number of identical sequences that

have been collapsed. The final contains unique

sequences with the frequency of each sequence in the

original data set. We compute the dominancy factor

of the sequences and add it to the Sequence database

D. Finally, the transaction list is sorted on the

descending order of dominancy factor.

Sequence Generation, Counting and Pruning

Sequence Graph Construction

During the preprocessing phase the frequent

sequences of length 1 and 2 were identified. We

construct a directed graph with the items being

represented as nodes. The edge between any pair of

nodes i and j has a weight w ij where w ij is equal to

the frequency of the 2-sequence i->j provided that the

sequence i->j is frequent. We store the frequent

sequences in a set FS. At end of this step, we have a

graph which represents all the frequent 2-sequences.

In the first pass of algorithm we try to identify and

evaluate potential long and rich candidates. The rich

sequences are the one whose constituent 2-sequences

have high support. In the directed graph, the 2-

sequenece frequencies are represented by the edge

weights; we can easily compute the path with the

highest weights between all pairs of nodes. We can

use modified Floyd-Warshal algorithm for the

purpose finding longest path as the rich candidates.

For the data set shown in Table -1, the supports of all

the 2-sequences are

a->b : 1, a->c: 4, a->d: 2;

a->f: 1; b->a: 2; b->c: 3;

b->d: 1, b->f: 1; c->a: 3;

c->b: 3; c->d: 1; c->f: 0;

d->a: 0, d->b: 0; d->c:3;

d->f: 1; f->a: 1, f->b:0,

f->c:2, f->d: 0;

The directed graph representing frequent 2-sequences

is shown in Figure -1:

Figure-1: Sequence Graph for the data set

The solution for the above graph (entries show the

weight and previous node in the path) is as follows.

Table-2: Longest Paths

 a B C D f

A NA 8/c 5/d 2/d -

B 6/c NA 7/d 9/a -

C 5/b 3/c NA 7/a -

D 8/b 6/c 3/d NA -

F 7/b 5/c 2/f 9/a NA

The algorithm generates the following path k-

sequences (k>2): f->c->b->a->d, a->d->c->b, b->a-

>d->c, b->c->a->d, c->b->a->d, d->c->b->a, f->c->b-

>a, a->d->c, b->c->a, c->b->a, d->c->b, f->c->b.

These long candidate sequences are evaluated by

scanning the sequence data for support frequencies

using the property 1-4. As a result the infrequent sets

found are- f->c->b->a->d, a->d->c->b, b->a->d->c,

b->c->a->d, c->b->a->d, d->c->b->a, f->c->b->a, b-

>c->a , c->b->a, and the frequent sequences are a->d-

>c, d->c->b, f->c->b.

Sequence Generation and Evaluation

Candidate Generation - As our algorithm follows top

down approach, we start with generating all

subsequences of size, k equal to the maximum length

of sequence in dataset, Maxlen, from the sequence

graph.

Pruning -We check the already existing infrequent

sequence list to determine that no subsequence of the

candidate sequence is in the infrequent list. If any

subsequence is in the infrequent list the candidate

sequence is also added to the infrequent list (property

3). We also check to see if the candidate sequence is

subsequence of any sequence contained in the

a

b

c

d

f

2

3

2

3

2

4

3

3

Bharat Bhasker

Communications of the IBIMA

Volume 6, 2008

152

frequent list (property 4). If so, the candidate

sequence is added to the frequent list. Otherwise the

sequence is added to the candidate list. Also, we

apply the support upper bound (property 2) to check

whether the subset could be infrequent, If the

generated sequence is infrequent, the sequence is

pruned. Otherwise, we add the sequence to the

candidate sequence.

Support Counting - We compute MaxMDTk of all the

candidate sequences and evaluate the frequency of

occurrence by scanning the customer sequence list to

the point MaxMDTk. The membership of sequence

Xk can be decided once the customer sequence

corresponding to its MDTk has been processed, as no

transactions beyond this point are going to contribute

towards the support of Xk. The process of 3.2.2 is

repeated by generating all paths of length k -1 from

the sequence graph, till we have evaluated the paths

of size 3 and above or in the previous step all the

paths generated were subsumed in the frequent list.

In the example table the maxlen is 6, in the first pass,

algorithm finds that sequence graph does not contain

any path of length 6, in subsequent pass a sequence

(f-c-b-a-d) of length 5 generated but is pruned as it is

already part of the infrequent list. In the next pass

seven sequences of length 4 are generated, 6 of them

are already in the infrequent list and are pruned. The

candidate sequence f-c-a-d is pruned based on

support upper bound. Finally, the sequences of path

length 3 are generated from the graph and final scan

of the data set is made to check the occurrences, the

additional 3-sequences c->a->d is found to be

frequent as well.

Sequence with the repeated items

The data set is transformed to a vertical set. In the

vertical set, each entry in the table has information

about the item’s customer id (cid) and the position of

event (eid). This enables us to compute the distance

between the successive occurrences of the same item

in a sequence. We compute the distance and the

frequency of such occurrences. a->d->c, d->c->b, f-

>c->b. c->a->d, a->c, a->d, b->a, b->c, c->a, c->b,

d->c, f->c

The vertical layout for the database with the (cid,eid)

pair showing the occurrence of an item in the

customer id and event id. For example entry (1,2) in

the list of ‘A’ means that ‘A’ has occurred in the

customer 1’s 2
nd

 event. The vertical dataset for the

example is as follows:

Items: (cid,eid) pair for the items

A: (1,1),(1,2), (1,3), (2,1), (2,4), (3,2), (4,3)

B: (1,2),(2,3),(3,2), (3,5), (4,5)

C: (1,2),(1,3),(1,5),(2,2),(2,3),(2,4),(3,1),(3,4),

 (4,1),(4,4),(4,6)

D: (1,4),(2,1),(3,3)

F: (1,5),(3,1),(3,3),(4,3)

From the above vertical layout, the repetition

distance and frequency table can be derived and is

shown in Table-3.

Table-3: Repetition Distance and Frequency

Nodes Distance, frequency

a and a 1,2 3,1

b and b 3,1 -

c and c 1,3 2,3 3,3 5,1

d and d - -

f and f 2,1 -

Since, the min support is defined to be 2, from the

table it can be seen tht only repetition of a at a

distance of 1 and c at a distance of 1,2 and 3 in the

sequence has minimum support. We take all the

frequent sequences found in the earlier phase, and

generated repetition patterns. So the candidates

generated by adding ‘a’ are illustrated here.

a->ac, a->ad, b->a->a, c->a->a, c->a->ad and

a->ad->c

All the candidates sequences generated after adding

a’s and c’s are checked in the data a set. Out of these,

a->ac, a->c->c and c->a->d->c are found to be

frequent.

4 Conclusion

The algorithm uses top down approach and generates

the longest possible candidate sequences. It also uses

the dominancy of sequences to determine the

Maximum depth of traversal to compute the support

for a candidate sequence. For the long patterns

usually these numbers are likely to contain a small

percentage of data set. This ensures that during the

evaluation the whole data set is not scanned. Also, if

the data set contains long frequent sequences, it is

identified early enough and thus all the subsequences

of this are also marked frequent and need not be

evaluated. The bottom-up algorithms start from 2-

sequences and keep building it up to the longest

possible sequence. In case of really long sequences

these algorithm scan the data set as many times as is

the length of longest times, in contrast this algorithm

will identify such patterns early enough and use it for

pruning all its subsequences.

An Algorithm for Mining Large Sequences in Databases

Communications of the IBIMA

Volume 6, 2008

153

References

1. Agrawal, R., and Srikant, R., Mining Sequential

Patterns: Generalizations and Performance

Improvements Proceedings of the 5th

International Conference on Extending Database

Technology: Advances in Database Technology

p. 3 – 17, (1996).

2. Pei J, Han J. et al: “PrefixSpan: Mining

Sequential Patterns Efficiently by Prefix-

Projected Pattern Growth” in Int'l Conf Data

Engineering,p 215-226 (2001)

3. Zaki, M. J., SPADE: An Efficient Algorithm for

Mining Frequent Sequences, Machine Learning,

v.42 n.1-2, p.31-60, January-February 2001.

4. Garofalakis M, Rastogi R and Shim, K, “Mining

Sequential Patterns with Regular Expression

Constraints”, in IEEE Transactions on

Knowledge and Data Engineering, vol. 14, nr. 3,

pp. 530-552, (2002).

5. Antunes, C and Oliveira, A.L: "Generalization of

Pattern-Growth Methods for Sequential Pattern

Mining with Gap Constraints" in Int'l Conf

Machine Learning and Data Mining, (2003) 239-

251

6. Lin, D I, and Kedem, Z M, “Pincer Search: A

new algorithm for discovering the maximum

frequent set”, in International conference on

Extending database technology, 1998.

Copyright © 2008 by the International Business

Information Management Association (IBIMA).

All rights reserved. Authors retain copyright for

their manuscripts and provide this journal with a

publication permission agreement as a part of

IBIMA copyright agreement. IBIMA may not

necessarily agree with the content of the

manuscript. The content and proofreading of this

manuscript as well as and any errors are the sole

responsibility of its author(s). No part or all of

this work should be copied or reproduced in

digital, hard, or any other format for commercial

use without written permission. To purchase

reprints of this article please e-mail:

admin@ibima.org.

