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ABSTRACT  

 

Frequent sequence mining is a fundamental and 

essential operation in the process of discovering the 

sequential rules.  Most of the sequence mining 

algorithms use apriori methodology or build the 

larger sequences from smaller patterns, a bottom-up 

approach. In this paper, we present an algorithm that 

uses top-down approach for mining long sequences. 

Our algorithm defines dominancy of the sequences 

and uses it for minimizing the scanning of the data 

set.   
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1 Introduction 
 

The sequential pattern mining problem [1,2,3,4,5] 

introduced by Agrawal and Srikant [1] has been of 

great interest for researchers as it has a very wide 

scope of applications spanning from the predicting 

the customer purchase patterns, and scientific 

discoveries.  

 

For example, given a time stamped sequences of 

purchases made by customers, where each event is 

made up of list of items purchased at the same 

timestamp by a customer. The objective of the 

sequential pattern mining algorithm is to discover all 

the frequent sequences. A sequence is called a 

frequent sequence provided it occurs more frequently 

than the minimum support specified by users. 

 

There are several heuristics such as GSP[1], SPADE 

[3], PrefixSpan [2] and the SPIRIT [4] that try to 

discover the frequent patterns in a efficient manner 

by trying to prune a large number of subsequences 

and thus reduce the search space.  The GSP algorithm 

[1] uses the anti-monotone property (all 

subsequences of a frequent sequence are also 

frequent). The SPADE finds frequent sequences 

using the lattice search [3] and intersection based 

approach. In this approach the sequence database is 

transformed to a vertical format. The candidate 

sequences are divided in groups. The frequent 

sequences are enumerated in SPADE using both 

methods – breadth first and depth first methods.  The 

support is counted for the generated sequences. The 

basic approach of te above three algorithm can be 

classified as the candidate-generation followed by 

support evaluation. The PrefixSpan [2] algorithm 

follows a pattern growth method. It uses projected 

databases for achieving this. Prefix is Projected 

Sequential Pattern mining. It examines prefix 

subsequences and projects the postfix subsequences 

into the databases. 

 

2 Model & Notation:  

 

Based on the Agrawal and Srikant[1], a sequence is 

an ordered set of events, denoted by (s 1 , s 2 , s 3 , … 

, s n ) where s j  is an event. Each event , also 

referred to as an itemset, is a non-empty, unordered, 

finite set of items, denoted by (i 1 , i 2 , i 3 ,….., i n ) 

where i j  is an item. The length of a sequence is the 

number of items present in the sequence. A sequence 

of length k is called a k-sequence. A sequence X 

denoted by (x 1 , x 2 , x 3 ,….., x n ) is said to be a 

subsequence of another sequence Y denoted by (y1 , 

y 2 , y 3 ,….., y n ) if x 1  ⊆  y
1i
, x 2 ⊆  y

2i
, ….., 

x n ⊆  y
ni

 where i 1 , i 2 , i 3 ,….., i n are integers 

such that i 1 <i 2 < i 3 <…..< i n . The sequence Y is 

said to contain the sequence X if X is a subsequence 

of Y. The sequence database S is a set of the form 

(cid, s) where cid, is the customer-id and s is the 

sequence. Let min-support be the user defined 

support, a sequence that occur more frequently than 

min-support is called frequent sequence. A maximal 

sequence is the one that is not a subsequence of any 

other frequent sequence. 

 

We define dominancy of an event e consisting of 

items (i1, i2, …, ik) as ED =Max (sup(i1), sup(i2),.. 

sup(ik)), where sup(i) is the frequency of occurece of 

item i. And, the dominancy factor of a sequence si, 

denoted by DFi, as the sum dominancy of individual 

events that appear in the sequence.  For a sequence  s 

= {xl | l = 1, 2….Ni ; xl ∈ s },  DFi = ∑l=1
Ni

 ED (xl), 

∀xl ∈Ti. 

 

The algorithm proposed in this work utilizes the 

dominancy factors for pruning the search.  Thus, 

during the preprocessing, we sort the entire dataset 

based on descending order of DF as shown in the 

table 1. By performing such transformations to the 
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initial dataset, we bring the dominant transactions i.e. 

those transactions that have longer potentially 

frequent patterns, to the top in order to mine the long 

patterns efficiently.   

 

Table -1: Sequence Data set 

CId Sequence  Dominancy 

C1 cg(af)cbc 4+1+Max(4,2)+4+4+4=21 

C2 (cf)(ab)(df)cbe 20 

C3 a(abc)(ac)d(cf) 19 

C4 (ad)c(bc)(ac) 16 

 

Sup(a) = 4, sup(b)= 4, sup(c)=4 sup(d)=3 

sup(e)=1 sup(f)=2 sup(g)=1 

 

In a dataset sorted based on descending order of DF, 

for a sequence X to be present in a sequence Ci, it 

should satisfy the property DF (X) ≤ DFi. So, as we 

are walking down the data set, we can determine a 

point beyond which a sequence, X, would not exists. 

For example in table 1, for the sequence = (c->a->b-

>a->c) the dominancy factor, computes to the value 

of 20.  Hence, in this case, we need to scan till C2 

only as the DF2 = 20. So, we define a point beyond 

which a sequence X of size k would not exist as the 

Maximum Depth of Traversal (MDTk) for a k-

sequence, Xk. A point beyond which any sequence of 

size k will not exist is defined as MaxMDTk.  

 

In other words, the dataset or transaction list, D, is an 

ordered set of quadruplet Q,  

D = {<Qi> | DFi ≥ DFi+1 } where  <Qi> = {(Si, Ni, 

DFi, Supi) | i = 1, 2,….L; Si is the ith customer 

sequence; Ni is the number of events in Si; DFi = 

∑l=1
Ni

 ED(xl); Supi = Sup (Si);} Where L is the total 

number of sequences in the dataset. 

 

The preprocessed dataset with the sorted transaction 

list has several properties that can be used for pruning 

the search space. These properties are as follows. 

 

Property 1:  

 

A candidate k-sequence, Xk ⊄ Si  ∀Si > MDTk. In 

other words, a candidate sub sequence Xk is 

definitely not a subset of sequence Si beyond the 

Maximum Depth of Traversal, MDTk of the 

candidate, Xk. 

 

Since, the customer sequences in the dataset, D are 

sorted on descending order of DFi, we can identify a 

point at which DFi < DF (Xk). Further, the dominancy 

factor is just the sum of supports of individual items 

in a transaction list (DFi). So, for a sequence to be 

present in a transaction, its total sum of supports or 

the dominancy factor should be more than the sum of 

supports of the subset to be evaluated DF (Xk). 

 

Property 2: 

 

For an sequence Xk to be frequent, the upper bound 

of the support should be at least equal to the user 

defined minimum support, minsupport. This property 

is used to prune infrequent sequences even before 

adding the sequence to the sequence tree. The 

duplicate transactions are combined together in the 

preprocessing step and the support (supi) is 

incremented for the i
th

 sequence appropriately. Thus, 

the support upper bound on support can be computed 

as follows. 

 

Upper bound (Xk)  =  ∑
MDTk 

m=fk (Supm) 

 

If Xk ∈ ℑ, then minsupport ≤  upper bound ( Xk )  

Otherwise Xk ∉ℑ. 

 

As each and every item in a sequence is distinct, any 

candidate sequence can occur at-most as many times 

as the support of a particular sequence. As per the 

property 1, any sequence Xk cannot exist beyond its 

MDTk.   So, once we know MDTk and the sequence’s 

first occurrence in data set, D, i.e. Sfk, we can 

ascertain the upper bound of the support by summing 

up the support of all sequences between these two 

points 

 
Property 3: Reverse Apriory Principle 

 

All subsequence of a maximal sequence are frequent 

and hence need not be evaluated for generating 

maximal sets. 

 

Property 4: Apriori Principle 

 

All supersets of an infrequent sequence are infrequent 

and hence need not be evaluated. 

 

3 VARIOUS PHASES OF OUR ALGORITHM 

 

Our algorithm follows top-down approach for mining 

the maximal sets. The frequent sequences are divided 

in two categories- one with repeated items and other 

with non-repeated items. The different phases of the 

algorithm are as follows: 

 

Pre-Processing Phase 

 

During this phase, we prepare the data and organize it 

in the form of sequence list described in the earlier 

section. The original sequence database is scanned. 

During the scan we count the support for all the 1-
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sequence and 2-seqences. The sequence list 

transformation requires that all the duplicate 

sequences are collapsed together and the support 

value reflects the number of identical sequences that 

have been collapsed. The final contains unique 

sequences with the frequency of each sequence in the 

original data set.   We compute the dominancy factor 

of the sequences and add it to the Sequence database 

D. Finally, the transaction list is sorted on the 

descending order of dominancy factor.  

 

Sequence Generation, Counting and Pruning 

 
Sequence Graph Construction 

 

During the preprocessing phase the frequent 

sequences of length 1 and 2 were identified. We 

construct a directed graph with the items being 

represented as nodes. The edge between any pair of 

nodes i and j has a weight w ij  where w ij is equal to 

the frequency of the 2-sequence i->j provided that the 

sequence i->j is frequent. We store the frequent 

sequences in a set FS. At end of this step, we have a 

graph which represents all the frequent 2-sequences. 

In the first pass of algorithm we try to identify and 

evaluate potential long and rich candidates. The rich 

sequences are the one whose constituent 2-sequences 

have high support. In the directed graph, the 2-

sequenece frequencies are represented by the edge 

weights; we can easily compute the path with the 

highest weights between all pairs of nodes. We can 

use modified Floyd-Warshal algorithm for the 

purpose finding longest path as the rich candidates. 

For the data set shown in Table -1, the supports of all 

the 2-sequences are 

 

a->b : 1, a->c: 4, a->d: 2;   

a->f: 1; b->a: 2; b->c: 3;  

b->d: 1, b->f: 1; c->a: 3;  

c->b: 3; c->d: 1; c->f: 0;  

d->a: 0, d->b: 0; d->c:3; 

d->f: 1; f->a: 1, f->b:0,  

f->c:2, f->d: 0;  

 

The directed graph representing frequent 2-sequences 

is shown in Figure -1: 

 
 

Figure-1: Sequence Graph for the data set 

 

The solution for the above graph (entries show the 

weight and previous node in the path) is as follows. 

 

Table-2: Longest Paths 

 a B C D f 

A NA 8/c 5/d 2/d - 

B 6/c NA 7/d 9/a - 

C 5/b 3/c NA 7/a - 

D 8/b 6/c 3/d NA - 

F 7/b 5/c 2/f 9/a NA 

 

The algorithm generates the following path k-

sequences (k>2): f->c->b->a->d, a->d->c->b, b->a-

>d->c, b->c->a->d, c->b->a->d, d->c->b->a, f->c->b-

>a, a->d->c, b->c->a, c->b->a, d->c->b, f->c->b.  

These long candidate sequences are evaluated by 

scanning the sequence data for support frequencies 

using the property 1-4.  As a result the infrequent sets 

found are-  f->c->b->a->d, a->d->c->b, b->a->d->c, 

b->c->a->d, c->b->a->d, d->c->b->a, f->c->b->a, b-

>c->a , c->b->a, and the frequent sequences are a->d-

>c,  d->c->b, f->c->b. 

 

Sequence Generation and Evaluation 

 

Candidate Generation - As our algorithm follows top 

down approach, we start with generating all 

subsequences of size, k equal to the maximum length 

of sequence in dataset, Maxlen, from the sequence 

graph.  

 

Pruning -We check the already existing infrequent 

sequence list to determine that no subsequence of the 

candidate sequence is in the infrequent list. If any 

subsequence is in the infrequent list the candidate 

sequence is also added to the infrequent list (property 

3). We also check to see if the candidate sequence is 

subsequence of any sequence contained in the 

a 

b 

c 

d 

f 

2 

3 

2 

3 

2 

4 

3 

3 
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frequent list (property 4). If so, the candidate 

sequence is added to the frequent list. Otherwise the 

sequence is added to the candidate list. Also, we 

apply the support upper bound (property 2) to check 

whether the subset could be infrequent, If the 

generated sequence is infrequent, the sequence is 

pruned. Otherwise, we add the sequence to the 

candidate sequence.  

 

Support Counting - We compute MaxMDTk of all the 

candidate sequences and evaluate the frequency of 

occurrence by scanning the customer sequence list to 

the point MaxMDTk. The membership of sequence 

Xk can be decided once the customer sequence 

corresponding to its MDTk has been processed, as no 

transactions beyond this point are going to contribute 

towards the support of Xk. The process of 3.2.2 is 

repeated by generating all paths of length k -1 from 

the sequence graph, till we have evaluated the paths 

of size 3 and above or in the previous step all the 

paths generated were subsumed in the frequent list. 

 

In the example table the maxlen is 6, in the first pass, 

algorithm finds that sequence graph does not contain 

any path of length 6, in subsequent pass a sequence 

(f-c-b-a-d) of length 5 generated but is pruned as it is 

already part of the infrequent list.  In the next pass 

seven sequences of length 4 are generated, 6 of them 

are already in the infrequent list and are pruned.  The 

candidate sequence f-c-a-d is pruned based on 

support upper bound.  Finally, the sequences of path 

length 3 are generated from the graph and final scan 

of the data set is made to check the occurrences, the 

additional 3-sequences c->a->d is found to be 

frequent as well. 

 

Sequence with the repeated items 

 

The data set is transformed to a vertical set. In the 

vertical set, each entry in the table has information 

about the item’s customer id (cid) and the position of 

event (eid). This enables us to compute the distance 

between the successive occurrences of the same item 

in a sequence. We compute the distance and the 

frequency of such occurrences. a->d->c,  d->c->b, f-

>c->b. c->a->d, a->c, a->d, b->a, b->c,  c->a, c->b, 

d->c, f->c 

 

The vertical layout for the database with the (cid,eid) 

pair showing the occurrence of an item in the 

customer id and event id. For example entry  (1,2) in 

the list of ‘A’ means that ‘A’ has occurred in the 

customer 1’s 2
nd

 event. The vertical dataset for the 

example is as follows: 

Items: (cid,eid) pair for the items 

 

A: (1,1),(1,2), (1,3), (2,1), (2,4), (3,2), (4,3)  

B: (1,2),(2,3),(3,2), (3,5), (4,5) 

C: (1,2),(1,3),(1,5),(2,2),(2,3),(2,4),(3,1),(3,4), 

      (4,1),(4,4),(4,6) 

D: (1,4),(2,1),( 3,3) 

F: (1,5),(3,1),( 3,3),(4,3) 

 

From the above vertical layout, the repetition 

distance and frequency table can be derived and is 

shown in Table-3.  

 

Table-3: Repetition Distance and Frequency 

Nodes  Distance, frequency 

a and a 1,2 3,1   

b and b 3,1 -   

c and c 1,3 2,3 3,3 5,1 

d and d - -   

f and f 2,1 -   

 

Since, the min support is defined to be 2, from the 

table it can be seen tht only repetition of a at a 

distance of 1  and c at a distance of 1,2 and 3 in the 

sequence has minimum support.  We take all the 

frequent sequences found in the earlier phase, and 

generated repetition patterns. So the candidates 

generated by adding ‘a’ are illustrated here. 

a->ac, a->ad, b->a->a, c->a->a, c->a->ad and  

a->ad->c 

 

All the candidates sequences generated after adding 

a’s and c’s are checked in the data a set. Out of these, 

a->ac, a->c->c and c->a->d->c are found to be 

frequent.  

 

4 Conclusion 

 

The algorithm uses top down approach and generates 

the longest possible candidate sequences. It also uses 

the dominancy of sequences to determine the 

Maximum depth of traversal to compute the support 

for a candidate sequence. For the long patterns 

usually these numbers are likely to contain a small 

percentage of data set. This ensures that during the 

evaluation the whole data set is not scanned. Also, if 

the data set contains long frequent sequences, it is 

identified early enough and thus all the subsequences 

of this are also marked frequent and need not be 

evaluated. The bottom-up algorithms start from 2-

sequences and keep building it up to the longest 

possible sequence. In case of really long sequences 

these algorithm scan the data set as many times as is 

the length of longest times, in contrast this algorithm 

will identify such patterns early enough and use it for 

pruning all its subsequences.  
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