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Abstract 

In this paper, we investigate the possibility of using 
EGADP for protecting data in horizontally-

distributed datasets. EGADP [10] is a new 
advanced data perturbation method that masks 
confidential numeric attributes in original datasets 
while reproducing all linear relationships in 

masked datasets. It is developed for centralized 
datasets that are owned by one owner, and no study 

(to the best of our knowledge) suggests and 
investigates empirically the possibilities of using it 
to protect distributed confidential datasets. This 
study is intended to fill this gap. 

 
1. Introduction 
Data mining techniques and algorithms play a 
central role in knowledge discovery. Data miners 
frequently need full access to the data in order to 
build accurate models. However, one of the biggest 
barriers facing data mining projects today is the 
“inability to release data” due to privacy concerns 
[3]. 
 
Additionally, the required data can be found with 
more than one party. In this situation there are two 
possibilities; datasets can be horizontally or 
vertically divided [5, 11].   In vertically-distributed 
datasets, different parties have access to all records 
but each party owns different attributes (or 
variables). In horizontally-distributed datasets, 
contributing parties own all required attributes but 
they have a subset of the needed records. 
 

Motivation Example 

Assume there are three banks that are participating 
in an alliance that allows them to share data about 
their customers. The shared data contains three 
non-confidential attributes S (S1: categorical either 

0 or 1 (e.g. male or female), and S2 and S3: numeric) 
and three confidential numeric attributes X (X1, X2 
and X3).  
 
The banks want to share and combine their 
horizontally-distributed datasets into one integrated 
dataset. The goal of sharing and integrating their 
distributed data is to independently perform basic 
statistical analysis and data mining tasks, such as 
linear multiple regressions, without restriction for the 
mutual benefit of all banks. At the same time, the 
banks must protect the sensitive numeric attributes 
(i.e. X) before sharing and building the required 
integrated dataset. 
 
For this motivation example, we simulated a new 
multivariate normally-distributed dataset similar to 
the one used in [8]. It consists of 6 attributes and 
50,000 records. Then, we randomly divided the 
records of this dataset into three (sub-)datasets. Each 
dataset belongs to a different bank identified by 
‘Bank No’ attribute. Table 1 lists few record 
examples from this simulated integrated dataset, 
which represents the combined three banks’ datasets, 
along its assumed source bank. The contributions of 
Bank 1, Bank 2, and Bank 3 to this dataset are 
18,000, 20,000 and 12,000 records, respectively. 
 
Table 2 presents the statistical measures for the 
simulated 50,000-records dataset. These measures 
include mean, standard deviation, correlation matrix, 
covariance matrix, and number of records. As we will 
discuss later, these measures are very important for 
data utility when we mask data using EGADP. 
Additionally, Table 3, Table 4, and Table 5 present 
similar measures for Bank 1, Bank 2, and Bank 3 
(sub-)datasets, respectively.  
 

 
Table 1: Original Dataset Combining the Three Banks’ Datasets 

 Original Dataset
*  

Customer 
No 

Non-Confidential Attributes (S) Confidential Attributes (X) Bank 
No S1 S2 S3 X1 X2 X3 

1 1 102.810 38.468 65.156 21.467 50.683 2 
2 1 59.328 36.755 56.266 17.991 46.043 1 
3 0 101.840 54.821 87.120 21.335 52.449 3 
4 1 99.733 51.979 74.428 23.664 46.659 1 
5 1 70.282 53.541 77.308 7.459 47.608 2 
: : : : : : : : 

49,996 0 109.810 53.500 113.900 12.272 39.900 1 
49,997 0 134.430 61.147 90.463 28.679 67.198 2 
49,998 1 101.970 57.772 91.724 19.943 54.317 3 
49,999 1 93.589 47.022 68.249 12.492 44.614 2 
50,000 1 99.582 53.304 88.220 17.811 48.313 1 

* The unit of S2, S3, X1, X2, X3 is $000 
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Table 2: Statistical Measures for the Original Three Banks’ Datasets (Combined) 

Summary Statistics 

  
Non-Confidential Attributes 

S 

 
Confidential Attributes 

X 

Mean 

  
Correlation 

Attribute S1 S2 S3 X1 X2 X3 

0.50  S1 1      
100.00  S2 -0.00023 1     
50.00  S3 -0.00214 0.700 1    
80.00  X1 -0.00295 0.800 0.750 1   
20.00  X2 0.00184 0.500 0.400 0.250 1  
50.00  X3 0.00689 0.300 0.200 0.150 0.600 1 

Standard 
Deviation 

 
 

Covariance 

Attribute S1 S2 S3 X1 X2 X3 

0.50  S1 0.250      
20.00  S2 -0.002 400.000     
10.00  S3 -0.011 140.000 100.000    
20.00  X1 -0.029 320.000 150.000 400.000   
5.00  X2 0.005 50.000 20.000 25.000 25.000  
10.00  X3 0.034 60.000 20.000 30.000 30.000 100.000 
Dataset Size: 50,000 records 

 

 

 

Table 3: Statistical Measures for Bank 1’s Original Dataset 

Summary Statistics  

 
Non-Confidential Attributes 

S 

 
Confidential Attributes 

X 

Mean 

 
 

Correlation 

Attribute S1 S2 S3 X1 X2 X3 

0.50  S1 1      
100.17  S2 0.00650-  1     
50.07  S3 0.00511-  0.700 1    
80.18  X1 0.01097-  0.798 0.748 1   
20.03  X2 0.00094 0.507 0.402 0.252 1  
50.08  X3 0.00292 0.304 0.204 0.151 0.604 1 

Standard 
Deviation 

 
 

Covariance 

Attribute S1 S2 S3 X1 X2 X3 

0.50  S1 0.250      
19.94  S2 0.065 -  397.720     
10.02  S3 0.026 -  139.780 100.320    
19.91  X1 0.109 -  317.040 149.270 396.570   
5.02  X2 0.002 50.778 20.194 25.195 25.201  
10.01  X3 0.015 60.599 20.419 30.087 30.362 100.120 
Dataset Size: 18,000 records 
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Table 4: Statistical Measures for Bank 2’s Original Dataset 

Summary Statistics  

 
Non-Confidential Attributes 

S 

 
Confidential Attributes 

X 

Mean 

 
 

Correlation 

Attribute S1 S2 S3 X1 X2 X3 

0.50  S1 1      
99.90  S2 0.00405 1     
49.99  S3 0.00100 0.699 1    
80.01  X1 0.00212 0.802 0.752 1   
19.93  X2 0.00143 0.494 0.396 0.246 1  
49.88  X3 0.01529 0.295 0.190 0.143 0.598 1 

Standard 
Deviation 

 
 

Covariance 

Attribute S1 S2 S3 X1 X2 X3 

0.50  S1 0.250      
20.11  S2 0.041 404.380     
10.03  S3 0.005 141.030 100.660    
20.16  X1 0.021 325.120 152.030 406.430   
4.99  X2 0.004 49.572 19.828 24.784 24.949  
9.99  X3 0.076 59.208 19.029 28.834 29.839 99.879 
Dataset Size: 20,000 records 

 

 

 

Table 5: Statistical Measures for Bank 3’s Original Dataset 

Summary Statistics  

 
Non-Confidential Attributes 

S 

 
Confidential Attributes 

X 

Mean 

 
 

Correlation 

Attribute S1 S2 S3 X1 X2 X3 

0.50  S1 1      
99.92  S2 0.00216 1     
49.92  S3 0.00278-  0.702 1    
79.71  X1 0.00075 0.799 0.750 1   
20.07  X2 0.00400 0.500 0.405 0.254 1  
50.08  X3 0.00097-  0.303 0.212 0.160 0.597 1 

Standard 
Deviation 

 
 

Covariance 

Attribute S1 S2 S3 X1 X2 X3 

0.50  S1 0.250      
19.90  S2 0.022 396.110     
9.92  S3 0.014 -  138.610 98.429    
19.86  X1 0.007 315.900 147.690 394.370   
4.98  X2 0.010 49.541 20.002 25.087 24.773  
10.00  X3 0.005 -  60.396 20.990 31.823 29.707 100.000 
Dataset Size: 12,000 records 
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2. Mask and Perturb Data using EGADP 

GADP [8], IPSO [2], and EGADP [10] are advanced 
data perturbation methods that were developed 
mainly to mask sensitive numeric attributes while 
reproducing original linear relationships in masked 
datasets. In order to guarantee that all relationships 
are linear, original datasets are assumed to be 
multivariate normally distributed [6]. 
 
EGADP data perturbation method avoids the 
problems found in the other two advanced data 
perturbation methods. Muralidhar and Sarathy [10] 
proved that EGADP does not suffer from a sampling 
problem as in the case of GADP even when EGADP 
is used to mask very small datasets. They also 
showed that IPSO suffers from a security problem 
that EGADP avoids.  
 
The procedure of masking datasets using EGADP 
can be explained as follows [10]: 

1. Regress X on S to calculate the fitted 
values u and the residuals set r, which is 
independent of S. 

2. Compute the covariance matrix ∑r
 of the 

residuals set r. This covariance matrix will 
be used later to scale another independent 
set of residuals and make its covariance 
matrix the same as∑r

. 
3. Generate independent random variates V. 

The size of V is the same as the size of X. 
4. Regress V on both S and X to generate 

another residuals set b, which is 
independent of both S and X. 

5. Compute the covariance matrix of the 
second residuals set ∑b . Note that although 
the new set of residuals b is independent of 
S, X, and r, the covariance matrix ∑

b
is 

different than∑r
. 

6. Compute a new residuals set e by scaling 
the (normalized) set of the independent 
residuals b to have the same covariance 
matrix as the covariance matrix  ∑r

of 
original dataset: 

 ( ) ( )
0.5 0.5−

= ∑ ∑r be b  (1) 

7. Calculate the new perturbed attributes Y: 

 = +Y u e  (2) 

Muralidhar and Sarathy [10] also proved that 
EGADP is optimal in terms of data utility and data 
security when all relationships in original 
centralized datasets are linear as in the case of 
multivariate normally-distributed datasets. In this 
study, we want to assess empirically the scalability 
of EGADP to the case of distributed horizontally-
divided datasets in terms of optimality of data utility 
and data security. 

3 Data Utility and Security Measures 

Since the focus of this study is linear relationships, 
maintaining and reproducing aggregate measures 
such as mean, correlation matrix, and covariance 
matrix in masked datasets are adequate data utility 
measures [2, 8-10]. This is based on the sufficient 

statistics theory [1, 4, 7]. Therefore, if the mean 
vector, correlation matrix and covariance matrix of 
masked datasets are similar to the ones of original 
datasets, masked datasets can be utilized in ways 
similar to the uses of original datasets. For EGADP 
to be scalable to the case of distributed datasets in 
terms of its data utility optimality, these measures of 
masked datasets should exactly (not just similarly) 
match the measures of original datasets.  
 
For data security, there are two conditions that 
should be satisfied [9]. Masked attributes Y should 
be independent of confidential attributes X given 
non-confidential attributes S. In addition, S should 
be always a better predictor for X than Y. Both 
mean that a snooper will always use S to obtain 
more accurate prediction results. However, if (s)he 
tries to combine Y with S to improve the prediction 
of X, (s)he gains nothing (avoid partial and 
inferential disclosure). When all relationships are 
linear as in our motivation example, these 
conditions can be translated in terms of canonical 
correlation CC in the following equality and 
inequality [12]: 
 

( ) ( ),CC CC=X S X S Y  (3) 
 

( ) ( )CC CC≥X S X Y   (4) 
 

4 Masking Horizontally-Distributed Datasets 

Using EGADP 
The procedure of masking horizontally-distributed 
datasets using EGADP is very simple and direct. 
Each party separately masks and perturbs his own 
original (sub-)dataset using EGADP as in the case of 
centralized datasets. Once this is done, each party 
can freely share their masked datasets. For this step, 
there are two possible and indifferent scenarios. In 
the first scenario, all masked datasets are sent to one 
specific (agreed on) party. The responsibility of this 
party is to combine all masked (sub-)datasets in one 
integrated masked dataset, and then forward it to all 
involved parties. In the second scenario, each party 
sends his masked dataset to all other parties. Then, 
each party builds his own integrated dataset. Now, 
each party can use the compiled dataset to build any 
model or run any statistical analysis s(he) wants 
without any restriction. Nevertheless, if the goal of 
sharing data is to build a specific model, all parties 
can cooperate in building that model using the 
integrated masked dataset. 
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Table 6: Masked Dataset Combining the Three Banks’ Masked Datasets 

 Masked Dataset
*  

Customer 
No 

Non-Confidential Attributes (S) Masked Attributes (Y) Bank 
No S1 S2 S3 Y1 Y2 Y3 

1 1 102.810 38.468 83.826 14.510 29.923 2 
2 1 59.328 36.755 55.474 19.666 49.066 1 
3 0 101.840 54.821 92.993 22.447 51.948 3 
4 1 99.733 51.979 83.535 16.338 43.184 1 
5 1 70.282 53.541 68.409 14.888 49.841 2 
: : : : : : : : 

49,996 0 109.810 53.500 104.720 15.645 53.556 1 
49,997 0 134.430 61.147 111.200 27.047 62.565 2 
49,998 1 101.970 57.772 91.667 12.950 25.935 3 
49,999 1 93.589 47.022 73.672 13.373 53.501 2 
50,000 1 99.582 53.304 76.545 12.997 54.152 1 

* The unit of S2, S3, Y1, Y2, Y3 is $000 
 

5 Results and Discussion 

In our motivation example, Bank 1, Bank 2 and 
Bank 3 mask independently their own confidential 
attributes X (X1, X2, X3) using EGADP. This means 
that Bank 1, Bank 2 and Bank 3 perturb separately 
18,000, 20,000 and 12,000 records, respectively. 
Then they freely share the masked datasets (S1, S2, 
S3, Y1, Y2, Y3) instead of their original confidential 
datasets (S1, S2, S3, X1, X2, X3). The three different 
datasets are combined in one dataset at one site and 
shared among all three banks. Table 6 lists few 
examples from this combined masked dataset 
(compare this table with Table 1). Each party, now, 
can build any model or run any statistical analysis 
from this integrated masked 50,000-records dataset.  
 
When we compare the statistical measures of each 
party’s dataset before masking (original dataset) 
with the corresponding statistical measures after 
masking, we find them identical (compare Table 7, 
Table 8, and Table 9 with Table 3, Table 4, and 
Table 5, respectively). This indicates that all banks 
could successfully apply EGADP on their own 
(centralized) datasets. Accordingly, all banks 
achieve (locally) optimal data utility and all original 
linear relationships were successfully reproduced in 
their masked datasets.  
 
When we compare the statistical measures of the 
combined 50,000-records masked dataset with the 
statistical measures of the original combined 
dataset, we also find them identical (please refer to 
Table 10 and compare it with Table 2). This shows 
that EGADP is scalable in terms of the optimality 
of data utility in the case of horizontally-distributed 
datasets. This could be contributed to the additive 
nature of the statistical measures that EGADP tries 
to maintain. The three banks can now obtain the 
same results from the masked integrated dataset as 
with the original integrated dataset when they run 
different multivariate analyses or build models such 
as multiple linear regression models [10]. 

 
Let assume that Bank 1 wants to build the 
following multiple regression model from the 
original integrated 50,000-records dataset (i.e. S, 
X): 
 

3 0 1 1 2 2 3 3 4 1 5 2
X S S S X Xβ β β β β β ε= + + + + + +  

 
However, Bank 1 has only access to the masked 
50,000-records dataset (i.e. S, Y). Thus, the bank 
will try to build the following model instead: 
 3 0 1 1 2 2 3 3 4 1 5 2Y S S S Y Yα α α α α α ε= + + + + + +  
 
The bank hopes that the regression coefficient 
estimated from the masked dataset would be as 
close as possible to the ones estimated from the 
original dataset (i.e. αi ≈ βi, i = 0,..,5). The bank 
built the regression model and estimated the 
regression coefficients from the masked dataset. 
When we compare these estimated coefficients with 
the ones estimated from the original dataset, we 
find that they are identical: α0 = β0 = 27.2069, α1 = 
β1 = 0.1143, α2 = β2 = 0.0063, α3 = β3 = -0.1038, α4 

= β4 = 0.0315, and α5 = β5 = 1.2390. This exceeds 
the expectations of Bank 1. 
 
This example demonstrates the advantage of the 
suggested approach of using EGADP to mask 
horizontally-distributed datasets: getting exact 
models from the masked data as with the original 
data. Another advantage of this approach is that the 
three banks are not limited to a specific analysis or 
model (e.g. a specific pre-defined dependent 
variable) as in the case of other protection methods 
(cf. Karr et al. [5]). Each bank can build one or 
more models that are different from the models 
built by other banks. 
 
These perfect data utility results and flexibility 
mean nothing if the optimality of data security of 
EGADP does not scale well from centralized 
datasets to distributed datasets. For the individual 
three banks’ datasets, the two (canonical correlation 
CC) data security conditions discussed earlier are 
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satisfied as expected (please refer to the first three 
lines in Table 11).  
 
However, the main concern is that when the banks 
combine the three masked distributed datasets, a 
snooper can learn about confidential attributes more 
than what was intended before data release. By 
checking the two security conditions for the banks’ 
50,000-records integrated dataset, the optimality of 
EGADP data security seems scaling well in the 
case of horizontally-distributed datasets and the two 
security conditions are satisfied (please refer to the 
last line in Table 11).  
 
The above discussion of both data utility and data 
security of the suggested approach shows that 

EGADP can be effectively applied to mask 
horizontally-distributed datasets when all the 
relationships in original datasets are linear or the 
goal is only to reproduce linear relationships in 
masked datasets.  
 
6. Conclusion and Further Research  
The results of this study prove that EGADP can be 
used effectively for  masking horizontally-
distributed datasets while enabling building 
accurate data  mining models and obtaining accurate 
statistical analysis results. We are now working  on 
developing the theoretical proofs for the results 
presented in this study and  elaborating more on the 
possible uses of EGADP for protecting 
horizontally- and  vertically- distributed datasets.

 

 

 

 

Table 7: Data Utility Measures (Statistical Measures) for Bank 1’s Masked Dataset 

Summary Statistics  

 
Non-Confidential Attributes 

S 

 
Confidential Attributes 

Y 

Mean 

 
 

Correlation 

Attribute S1 S2 S3 Y1 Y2 Y3 

0.50  S1 1      
100.17  S2 0.00650-  1     
50.07  S3 0.00511-  0.700 1    
80.18  Y1 0.01097-  0.798 0.748 1   
20.03  Y2 0.00094 0.507 0.402 0.252 1  
50.08  Y3 0.00292 0.304 0.204 0.151 0.604 1 

Standard 
Deviation 

 
 

Covariance 

Attribute S1 S2 S3 Y1 Y2 Y3 

0.50  S1 0.250      
19.94  S2 0.065 -  397.720     
10.02  S3 0.026 -  139.780 100.320    
19.91  Y1 0.109 -  317.040 149.270 396.570   
5.02  Y2 0.002 50.778 20.194 25.195 25.201  
10.01  Y3 0.015 60.599 20.419 30.087 30.362 100.120 
Dataset Size: 18,000 records 
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Table 8: Data Utility Measures (Statistical Measures) for Bank 2’s Masked Dataset 

Summary Statistics  

 
Non-Confidential Attributes 

S 

 
Confidential Attributes 

Y 

Mean 

 
 

Correlation 

Attribute S1 S2 S3 Y1 Y2 Y3 

0.50  S1 1      
99.90  S2 0.00405 1     
49.99  S3 0.00100 0.699 1    
80.01  Y1 0.00212 0.802 0.752 1   
19.93  Y2 0.00143 0.494 0.396 0.246 1  
49.88  Y3 0.01529 0.295 0.190 0.143 0.598 1 

Standard 
Deviation 

 
 

Covariance 

Attribute S1 S2 S3 Y1 Y2 Y3 

0.50  S1 0.250      
20.11  S2 0.041 404.380     
10.03  S3 0.005 141.030 100.660    
20.16  Y1 0.021 325.120 152.030 406.430   
4.99  Y2 0.004 49.572 19.828 24.784 24.949  
9.99  Y3 0.076 59.208 19.029 28.834 29.839 99.879 
Dataset Size: 20,000 records 

 

 

 

Table 9: Data Utility Measures (Statistical Measures) for Bank 3’s Masked Dataset 

Summary Statistics  

 
Non-Confidential Attributes 

S 

 
Confidential Attributes 

Y 

Mean 

 
 

Correlation 

Attribute S1 S2 S3 Y1 Y2 Y3 

0.50  S1 1      
99.92  S2 0.00216 1     
49.92  S3 0.00278-  0.702 1    
79.71  Y1 0.00075 0.799 0.750 1   
20.07  Y2 0.00400 0.500 0.405 0.254 1  
50.08  Y3 0.00097-  0.303 0.212 0.160 0.597 1 

Standard 
Deviation 

 
 

Covariance 

Attribute S1 S2 S3 Y1 Y2 Y3 

0.50  S1 0.250      
19.90  S2 0.022 396.110     
9.92  S3 0.014 -  138.610 98.429    
19.86  Y1 0.007 315.900 147.690 394.370   
4.98  Y2 0.010 49.541 20.002 25.087 24.773  
10.00  Y3 0.005 -  60.396 20.990 31.823 29.707 100.000 
Dataset Size: 12,000 records 
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Table 10: Data Utility Measures (Statistical Measures) for the Masked Three Banks’ Datasets 
(Combined) 

Summary Statistics  

 
Non-Confidential Attributes 

S 

 
Masked Attributes 

Y 

Mean 

 
 

Correlation 

Attribute S1 S2 S3 Y1 Y2 Y3 

0.50  S1 1      
100.00  S2 -0.00023 1     
50.00  S3 -0.00214 0.700 1    
80.00  Y1 -0.00295 0.800 0.750 1   
20.00  Y2 0.00184 0.500 0.400 0.250 1  
50.00  Y3 0.00689 0.300 0.200 0.150 0.600 1 

Standard 
Deviation 

 
 

Covariance 

Attribute S1 S2 S3 Y1 Y2 Y3 

0.50  S1 0.250      
20.00  S2 -0.002 400.000     
10.00  S3 -0.011 140.000 100.000    
20.00  Y1 -0.029 320.000 150.000 400.000   
5.00  Y2 0.005 50.000 20.000 25.000 25.000  
10.00  Y3 0.034 60.000 20.000 30.000 30.000 100.000 
Dataset Size: 50,000 records 

 

 

 

Table 11: Data Security Measures Using Canonical Correlation 

Dataset 
Dataset 

Size 

 
Condition 1 

 
Condition 2 

 
CC(X|S) = CC(X|S,Y) CC(X|S) ≥≥≥≥ CC(X|Y) 

Bank 1 Dataset 18,000 0.8940 = 0.8940 0.8940 ≥ 0.7992 
Bank 2 Dataset 20,000 0.8949 = 0.8949 0.8949 ≥ 0.8008 
Bank 3 Dataset 12,000 0.8927 = 0.8927 0.8927 ≥ 0.7969 

Integrated Dataset 50,000 0.8940 = 0.8940 0.8940 ≥ 0.7993 
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