
Distributed Java Based Medical Imaging Informatics Model

Communications of the IBIMA

Volume 10, 2009 ISSN: 1943-7765

133

Distributed Java Based Medical Imaging Informatics Model

Ahmad Shukri S Mohd Noor
1
 and Md Yazid Md Saman

2.

Department of Computer Science ,Faculty of Science and Technology

University Malaysia Terengganu

21030 Kuala Terengganu, Malaysia

096683159 / 09-6694660(FAX)

E-mail address: ashukri@umt.edu.my
1

/

yazid@umt.edu.my

2

ABSTRACT
Abstract- Digital medical informatics and images are commonly

used in hospitals today,. Because of the interrelatedness of the

radiology department and other departments, especially the

intensive care unit and emergency department, the transmission

and sharing of medical images has become a critical issue.

 Our research group has developed a Java-based distributed

medical informatics(DMI) framework to facilitate the rapid

development and deployment of medical imaging applications in

a distributed environment that can be shared and used by related

departments and mobile physicians. Java Based Distributed

medical informatics is a unique suite of multimedia

telemedicine applications developed for the use by medical

related organizations. The applications support real-time

patients’ data, image files, audio and video diagnosis annotation

exchanges. The DMI enables joint collaboration between

radiologists and physicians while they are at distant

geographical locations. The DMI environment consists of

heterogeneous, autonomous, and legacy resources. The

Common Object Request Broker Architecture (CORBA), Java

Database Connectivity (JDBC), and Java language provide the

capability to combine the DMI resources into an integrated,

interoperable, and scalable system. The underneath technology,

including IDL ORB, Event Service, IIOP JDBC/ODBC, legacy

system wrapping and Java implementation are explored. This

paper explores a distributed collaborative CORBA/JDBC based

framework that will enhance medical information management

requirements and development. It highlights the capability of

DMI both in hardware and software as technologically

independent. It encompasses a new paradigm for the delivery of

health services that requires process reengineering, cultural

changes, as well as organizational changes

KEY WORDS

Java, CORBA, DICOM , Medical Imagine ,Medical

Informatics , Distributed Object Computing.

1. Introduction

Digital medical images are commonly used in hospitals

today, even outside the radiology department. Because of

the interrelatedness of the radiology department and other

departments, especially the intensive care unit and

emergency department, the transmission of medical

images has become a critical issue. The use of World

Wide Web and network related technologies in radiology

is not new. These technologies have been used in

radiology teaching files to access information in

multimedia integrated picture archiving and

communication systems (PACS), for teleradiology

purposes . Web technology has also been used to access

the images stored in a Digital Imaging and

Communications in Medicine (DICOM)archive in PACS

environments[1][2].

2. Project Background

This research develops a framework of distributed

medical informatics that can be used for multimedia data
exchange. framework can be expand it any distributed
object oriented, collaborative applications, for example,
distance learning modeling and simulation

A DMI system based on distributed object computing
sytem. The system can be viewed as a set of object
services and a set of client applications. Each client
application has a defined, interactive user interface. The
object services provide and manage the information for
the DMI clients. The ultimate goal is to have a complete
set of services with a single fine-grained framework. The
DMI strategy is an approach towards a single architecture
where hardware and software from multiple vendors
coexist in harmony. This is achieved by categorizing
information into components or services (object services)
as they communicate, by passing the information via
interface invocations of objects. These object services are
manufactured by different vendors and can run on
different computers on networks.

Clearly, the integration methodology used to support

such architecture must have certain key characteristics:

(I) distributed: it must support a service object

model that is distributed across a regional area
over LAN and WAN networks.

(2) platform independent: it must support multiple

computing platforms, from mainframes to
servers to desktop PCs.

(3) heterogeneous: it must support all different types

and classes of medical equipment and software
tools from many different vendors.

(4) location insensitive: it must allow components in

the system to replaced, repaired, upgraded and
changed without compromising its ability.

Ahmad Shukri S Mohd Noor and Md Yazid Md Saman

Communications of the IBIMA

Volume 10, 2009 ISSN: 1943-7765

134

Obviously, interoperability is a key technology that
allows this exchange to scale. Interoperability is also the
ability to leverage and reuse system content and
functionality to an end user or to another system

3. Approach

At present, a lot of new applications are being developed

based on the object-oriented philosophy and standards,

together with distributed-object concepts. The design and

implementation of these two concepts are difficult so that

the applications developed could deliver business value to

the business world, which mostly are driven by the

information and technology. Other than that, information

must be accessible across networks (either through local

or remote machines) and must accurate all the time. The

software written must be able to run on a network where

all the functionality components are distributed to

machines in the network (different platforms) and use

different programming languages for the components of

the system. For example, Java maybe used at the user

interface in front end and C++ maybe used at the main

functionality components in back end. Anyway, the

developed components of the system must also be

integrated easily into new systems. With all these

requirements and complexities, a application need to have

a three-tier distributed object- computing architecture that

might be the answer for these problems.

The distributed and heterogeneous nature of todays

computing systems requires a middleware infrastructure

capable of supporting a three-tier computing architecture

such as Common Object Request Broker Architecture

(CORBA). Business logic can be built, or existing

applications encapsulated, into middle-tier components

that interact with end users via standard interfaces such as

web browsers and standard GUI desktops, and back-end

data repositories [4].

3.1 Common Object Request Broker Architecture

Common Object Request Broker Architecture (CORBA)

was introduced by OMG in 1991 to go a step beyond

OMA to specify technologies for interoperable distributed

OO systems. Figure 1 shows the CORBA in a

client/server system.

Figure 1 : CORBA in client/server environment

It is structured to allow integration of a wide variety of

object systems. With the CORBA specification, a broad

and consistent model for building distributed applications

is defined :

• An object-oriented based model for developing

applications

• A common application programming objects in the

network to be shared by client and server applications

• A syntax to define and describe the interfaces of

objects used in the environment

• Support for multiple programming languages and

platforms

Therefore, CORBA model formally separates the client

and server portions of the application and also logically

separates an application into objects that can perform

certain functions. It also provides data marshaling to send

and receive data with remote or local machine

applications without direct knowledge of the information

source or its location. In the CORBA environment, client

and server applications communicate using Object

Request Broker (ORB).

3.2 Utilising Java Technologies With CORBA

The Java programming language is a strongly typed,

object-oriented language that borrows heavily most of its

syntax from C and C++. Java is a simple, object-oriented,

distributed, interpreted, robust, secure, architecture

neutral, portable, high performance, multithreaded and

dynamic language. This language was primarily used for

developing applets-downloadable mini-applications that

could be embedded inside Web pages and performed in

browsers. However, since 1995, Java has emerged as a

first-class programming language that is being used for

everything from embedded devices to enterprise servers.

Nowadays the Java language can be seen in use in a wider

range of applications. When an application is written and

compiled in one place it can run on any machine under

any operating system. Sometimes the "Write Once, Run

Anywhere" slogan is called the synonym of Java.

Anyway, platform independence is the ability of a

program to move from one computer system to another.

Java is platform independent at both the source and the

binary level. The secret of the Java has been hidden into

Java Virtual machine (JVM). Instead of creating machine

dependent code, the Java compiler creates a bytecode

format, which can be run on any Virtual Machine (VM).

Somehow, Java makes programming easier because it is

object-oriented and has automatic garbage collection.

Java offers tremendous flexibility for distributed

application development. To do this, Java needs to be

augmented with a distributed object infrastructure, which

Client

Applicatio

n

Server

Applicatio

n

Object Request Broker

Request

Service

Directs

Respons

e

Return

Response

Directs

Request

Distributed Java Based Medical Imaging Informatics Model

Communications of the IBIMA

Volume 10, 2009 ISSN: 1943-7765

135

is where OMG's CORBA comes into the picture. Using

CORBA requires more than just a knowledge of the

CORBA architecture. CORBA should be part of a well

designed system architecture.

CORBA technology as part of the Java 2 platform

consists of an Object Request Broker (ORB) written in

Java. Java IDL adds CORBA capability to the Java

platform, providing standards-based interoperability and

connectivity. Java IDL enables distributed Web-enabled

Java applications to transparently invoke operations on

remote network services using the industry standard

OMG IDL (Interface Definition Language) and IIOP

(Internet Inter-ORB Protocol) defined by the Object

Management Group.

3.3 Digital Imaging and Communications in Medicine

The Digital Imaging and Communications in Medicine

(DICOM) standard was created by the National Electrical

Manufacturers Association (NEMA) to aid the

distribution and viewing of medical images, such as CT

scans and ultrasound. New technologies such as Java

should always be used as complements of the de facto

standard in medical imagine, DICOM. DICOM allows the

interchange of images from different modalities, archives,

and workstations from different vendors. java technology

can be used to build a storage system and to make this

service accessible for different clients. However, this

storage service should also incorporate DICOM services

to store and access examination data from DICOM

workstations and DICOM modalities.

Since Java version 1.4, the Java standard includes a

specification for working with images stored in files and

accessed across the network. This specification is called

Java Image I/O. It provides a pluggable framework for

easily adding support for alternate image formats using

third-party plug-ins. The DICOM Image I/O Plug-in

connects the DICOM® standard to the Java™ standard.

DICOM is the universal standard for sharing medical

imaging resources between heterogeneous and multi-

vendor equipments (acquisition device, workstation,

storage server, patient management system, etc.).

3.4 Java Medical Application Program Interface(API)

 A toolkit has been created specifically for interpreting

medical image data; it thus acts as a platform for

development of medical imaging applications. The

toolkit, which is referred to as NeatMed, is intended to

reduce development time by eliminating the need for the

application developer to deal directly with medical image

data. NeatMed was implemented by using Java. NeatMed

currently provides support for the DICOM in Medicine

and Analyze medical image file formats.The Neat-Med

API is distributed in accordance with the terms and

conditions laid out in the GNU Lesser General Public

License. This license was selected to ensure that the

NeatMed API is accessible to all potential users.

NeatMed was developed using the Java programming

languages. It was initially intended for the development of

software for use in the consumer electronics industry (eg,

set-top boxes). The core Java libraries maintained by Sun

Microsystems are used as the foundation for the

development of any Java application. These libraries can

be used in conjunction with an extension API in order to

develop specialized applications. An extension API is a

set of classes that can be instantiated by a programmer to

create a particular type of application, thus facilitating

software reuse. NeatMed is an example of an extension

API that can be used for the development of applications

that deal with off-line medical image data. A large

number of Java APIs exist; these deal with a broad range

of applications ranging from communicating with the

serial and parallel ports to advanced image processing.

The set of classes representing the API is deployed in

some type of library. Java provides a packaging tool that

can be used to package a set of class files and associated

resources into a Java archive or JAR file. In order to be

useful, an API must be well documented. Java provides a

documentation tool called Javadoc that allows an API

developer to document software as it is being written. The

resulting documentation provides detailed information

about each class, method, and variable that is defined in

the associated API. The structure of Javadoc

documentation is more or less the same for every API.

This makes it very easy for programmers to familiarize

themselves with a new API once they are comfortable

with the basic Javadoc documentation structure. The API

documentation is generated in HTML and can be viewed

using any standard Web browser. Java has a wide range

of benefits associated with it; however, there are also

some limitations. One example is performance: Java is a

multiplatform programming language; the byte code (ie,

binary form) that represents a Java program is interpreted

and not executed directly. This reduces the performance

of a Java program compared to a natively executed

program. Overall, however, the benefits associated with

Java (listed previously) far outweigh the drawbacks,

hence its selection for the development of NeatMed.. In

Fig 2, Client Programming structure show flexibility, and

ease of use of the NeatMed API in java Environment

The medical imaging application developers

interface(API), NeatMed interface (API), was developed

using the Java programming language (Sun

Microsystems, Mountain View, Calif). An extension API

is a set of classes that can be instantiated by a

programmer to create a particular type of application, thus

facilitating software reuse. NeatMed is an example of an

extension API that can be used for the development of

applications that deal with off-line medical image

data..NeatMed currently provides support for the Digital

Ahmad Shukri S Mohd Noor and Md Yazid Md Saman

Communications of the IBIMA

Volume 10, 2009 ISSN: 1943-7765

136

Imaging and Communications in Medicine and Analyze

medical image file formats. The NeatMed API is a group

of core and support classes that can be used to interpret,

represent, and manipulate images and related data that are

stored in DICOM-compliant files. The central class in the

API is the DICOMImage class. A DICOMImage object

can be instantiated by specifying a reference to a suitable

data source in the constructor. The constructor will accept

data from a number of sources (eg, local file, data stream,

Figure 2: Client Programming structure.

and remote uniform resource locator (URL)). Once

constructed, a DICOMImage object provides direct access

to all of the data elements stored within the specified

DICOM source. Other classes in the API are used to

represent individual components within a DICOM

RadioGraphics.

The choice of Java for implementing the NeatMed API

was also influenced by a number of its key features:

• Ease of use: Java is a modern programming

language that was designed with simplicity in

mind. Many of the complexities that are

associated with other programming languages

have been omitted, whereas much of the power

and flexibility has been retained. This makes

Java very easy to learn and use, particularly in

the case of novice programmers.

• Level of support: Although Java is a relatively

new programming language, there is a significant

amount of support material available. Numerous

texts have been written dealing with all aspects

of the language. In addition, tutorials, sample

source code, API documentation, and freely

available integrated development environments

(IDEs) can all be accessed via the Internet.

• Portability: Java is a multiplatform

programming language. This means that a Java

• application developed on one operating system

(eg, MacOS [Apple Computer, Cupertino, Calif])

can be deployed on a number of other different

operating systems (eg, Windows [Microsoft,

Redmond, Wash], Solaris [Sun Microsystems],

and Linux). This is sometimes referred to as the

“write once, run anywhere” paradigm. In theory,

the use of a multiplatform programming

language significantly increases the potential

user base with little or no extra development

overhead.

• Core functionality: The core Java libraries

encapsulate an extensive range of functionality

that can be easily reused to create reliable,

diverse, and powerful applications. Some of the

main capabilities supported by the core libraries

include networking, file input/output, image

processing, database access, and graphical user

interface (GUI) development.

• Extension APIs and toolkits: There is a large

number of extension APIs and toolkits that can

be used in conjunction with the core Java

libraries. These extensions usually deal with a

particular specialty such as advanced image

processing, three-dimensional graphics, or

speech recognition. The concept of a Java-based

medical imaging toolkit is not entirely new.

5. Distributed Medical informatics Architecture.

The distributed medical informatics architecture design

includes client applications at the 1
st
 tier that access

remote medical imaging data query server and database at

3
rd

 tier via Java ORB as a middle agent at 2
nd

 tier, As

illustrated in figure 3.

The client’s implementations comprised of a Java

application . All the user interfaces were created using

GUI

Image

screen

Swing /

awt

Medical

Image

files.

DICOM

Text

form

screen

NeatMed

API

handler

Images

files in

byte[]

stream

from

server

Process binary[],

convert Buffer data,

treat as dicom file

 Data Layer

Byte[]1010101

stream

Interpretention

Layer

Presention

Layer

Client Side

(in Any Platform)

Distributed Java Based Medical Imaging Informatics Model

Communications of the IBIMA

Volume 10, 2009 ISSN: 1943-7765

137

Java APIs while NeatMed API for presenting and

displaying the medical image files in DICOM format.

The server is comprised of the some logical algorithms

that responsible for executing an input query statement

from the client and returning the query results back to the

client. The connection between the servers and the IBM

DB2 Database is accomplished via its native JDBC

driver. This server is placed on the local area network

(LAN) with Java ORB acting as the middleware. The

ORB using octet-streaming services is utilized to transfer

multimedia data such as medical images, It also can be

used for audio and video in a 3-tiers heterogeneous

environment.

Figure3: Distributed Medical informatics Application

Architecture

The back-end tier of the architecture involves the storage

and retrieval of multimedia data on the database server.

 In this paper, the Object Relational database management

system (ORDBMS) is used for the development of

medical imaging and multimedia database as it allows

queries to be performed on complex data, e.g.

images,video, audio, etc. The following components are

utilised in the development of the server application:

• IBM DB2 v 8.1 PE database.

• Server application (ProjectServer.class) for

receiving object and sending back the object

from/to client application.

• Server application logic (ProjectImpl.class) for

executing as input query

IBM DB2 has been chosen as the implementation

database. Due to IBM DB2 ability to support the binary

large object blocks (BLOBs) data. All the image data are

stored in their native binary format in a particular column

of the database table.

The following features are provided by the client's

implementations(ProjectClient.class) via a Graphical User

Interface (GUI):

• Binding to the servers’ implementations.

• Invoking the servers’ implementation with

the appropriate commands.

• Displaying and presenting the query results(text

and images) to the user.

 The design depicts that ORB can be an integral part of

deploying Java applets/applications, including those that

access database. The diagram also shows that the client

application does not directly connect to the databases.

Instead, Java ORB facilitates database connectivity by

allowing client-side objects to communicate with server-

side objects that assume responsibility for performing

database access. That is, server-side objects is written to

Figure 4: Distributed Medical informatics Data flow

Architecture
handle database access on behalf of a client object(s) that

instantiated it. The client main function is to display

multiple media data to the user in the specified format.

Such architecture can provide adequate database support

Client Site

open

Platform

open

platform
Operating

J

V

M

Open Platform

System Environment

Java Virtual

Machine

(JVM)

Server Site

Logic

IBM-DB2

(Object

Relational

IBM-DB2

Native

JDBC

Applica

tion

Server ORB

Graphical

User Interface

(Client)

h

t

t

p

Web Browser

Netscape/IE

Medical

Image data

TCP/IP

T

C

P

/IP

Network

 Java ORB (text and octet[]array stream)

Image

screen

Java/

NeatMed

handler

JDBC

data query

IBMDB2

(Blob/Text)

Buffer

Byte[]

Array

Medical

Image

files

(dicom)

Buffer

Byte[]

Array

TCP/IP

Text

form

screen

Client Side

1
st
 Tier

CORBA

Middle Tier

Server Side

3
rd

 Tier

2
nd

 Tier 1
st
 Tier 3

rd
 Tier

Ahmad Shukri S Mohd Noor and Md Yazid Md Saman

Communications of the IBIMA

Volume 10, 2009 ISSN: 1943-7765

138

for medical applications demanding interactive medical

imaging presentations. Figure 4 depict the system data

architecture based on the

5.1 Database Connectivity

The Java Development Kit (JDK) has already supplied

together with the Java Database Connectivity (JDBC)

module to allow Java programmers connecting and

querying remote databases. That is, JDBC is a set of Java

classes to provide a Java object interface to SQL

databases. JDBC can be viewed from a high-level abstract

view or from a low-level database specific view . Figure

4 shows the relationship between JDBC API and database

driver. In brevity, the JDBC API is implemented via a

Database vendor Native driver or Object Database

Connectivity ODBC.

Figure 5: JDBC API And Database Driver Relationship

JDBC API high-level view, the JDBC application

programming interface (API) defines Java classes to

represent database connections, SQL statements, result

sets, database metadata, and so on. It allows a Java

programmer to issue SQL statements and process the

results. JDBC is the primary API for database access in

Java. In short, the JDBC API provides methods allowing

an application to connect, query, and manipulate

databases. At low-level view (JDBC Driver), a database

specific implementation of the JDBC abstract classes,

called a JDBC driver, must be provided in order for the

Java database programmer to access the database. JDBC

drivers can either be entirely written in Java, so that they

can be downloaded as part of an applet, or they can be

implemented using native methods to bridge existing

database access libraries.

A database application obtaining database access through

the JDBC API will work with any data source providing a

JDBC driver. IBM DB2 database has been selected for

this application due its capability to handle Binary Large

Objects or Large Objects (BLOBs) files. BLOBs in

general, are used to store unstructured data. Unstructured

data is data that cannot be decomposed into a relational

schema. Examples are pictures in any format like

DICOM. Since the IBM DB2 Database supports the

storage of data BLOBs, all the medical images data can

be stored in their native binary format in a particular

column of the database table.

6. Implemantation

In this application, client patient’s detail screen and

medical image in DICOM format screen are displyed in

separated windows.
i. The client request patient data by providing patient

case retrieving procedures such as patient id and

notifies the server(services Perovider) via corba event

service .

ii. The Server retrieve a patient demographic data and

image(s) from client and send the DBA via JDBC

Server using JDBC connectivity to the DBMS, e.g.,

IBM DB2 database. As in figure 5

Fig 6:Server response screen shot

iii. The Server passes the patient demographic data and

image file identification (where those files resid ein

remote storage) to the client via ORB.

iv. The remote Client fetches the demographic data

 and display then details on client GUI screen as

depict in figure 6 . Then it point the patient image(s)

based on the given file identification. then, the

system pop-up the medical image as illustrated

figure 7 below

Fig 7. Screenshot of GUI patient’s data

Server Application

JDBC API
JDBC Driver Manager

Database Driver

Database

(IBM DB2)

Distributed Java Based Medical Imaging Informatics Model

Communications of the IBIMA

Volume 10, 2009 ISSN: 1943-7765

139

Fig 8. Screenshot of patient’s Medical Image

7.0 Conclusion

The three-tier distributed medical imagine application

allow the application interoperability and independence of

platform, operating system, programming language and

even of network and protocolThe application architecture

or framework is an important and common stage in the

development of any medical imaging application in

distributed environment.

NeatMed removes the need to deal directly with encoded

medical image data, thus increasing productivity and

allowing the developer to concentrate on other aspects of

application development. NeatMed is written in Java, a

multiplatform programming language with a large amount

of freely available support material that is straightforward

to learn and use.These and other features of Java make

NeatMed accessible to a large group of potential users.

Most important, NeatMed is a freely available research

tool whose ongoing development is driven by the needs

and requirements of its users.

References

[1] Mildenberger P, Eichelberg M, and Martin E.

(2002)Introduction to the DICOM standard.

European Radiology , Publisher: Springer Berlin /

Heidelberg ISSN: 0938-7994.

[2] Rosslyn,V.(2003)National Electrical Manufacturers

Association. Digital Imaging and Communications in

Medicine (DICOM):National Electrical anufacturers

Association, 2003; PS 3.1-2003– 3. 16-2003.

[3] Robinson, J. and Wakeman I(2004) “Middleware

for service composition in pervasive computing”.

The 2nd Workshop on Middleware for Pervasive and

Ad-hoc Computing , Toronto, Canada

[4] A. S. Mohd Noor and M. Y. Saman (2006).

”Traditional CORBA Framework Re-engineering For

Distributed Medical Informatics Model

Development”. IEEE International Conference on

Computing & Informatics (ICOCI 2006) 6 – 8 June,

2006, Kuala Lumpur, MALAYSIA.

[5] Togni D, Ribas P and Lisboa. M (2005) “Tool

 integration using the web-services approach”

 Proceedings of the 15th ACM Great Lakes

 symposium on VLSI, Chicago, Illinois, USA

[6] Aaron W. Jr. (2004) “Flexible distributed

 programming in an extended Java”. ACM

 Transactions on Programming Languages and

 Systems (TOPLAS), Volume 26 Issue 3,

[7] Wan Zahari, W. N. I. (2003), Model Pengkomputeran

Teragih Bagi Memaparkan Rupa Bumi Berdigit

Bersaiz Besar. Master Thesis. Univerisiti Teknologi

Malaysia.

[8] Gokhale, A. and Schmidt, D. C. (1998), Measuring

and Optimizing CORBA Latency and Scalability

Over High-speed Networks. Transactions on

Computing, 47(4).

[9] Morgan G and Fengyun L. (2005) “Visibility &

games: Interest management middleware for

networked games”. Symposium on Interactive 3D

graphics and games , Washington, USA

[10] Gokhale, A. and Schmidt, D. C. (1996), Measuring

the Performance of Communication Middleware on

High-Speed Networks. In Proceedings of SIGCOMM

’96, pages 306–317, Stanford, CA. ACM.

Copyright © 2009 by the International Business

Information Management Association (IBIMA). All

rights reserved. Authors retain copyright for their

manuscripts and provide this journal with a publication

permission agreement as a part of IBIMA copyright

agreement. IBIMA may not necessarily agree with the

content of the manuscript. The content and proofreading

of this manuscript as well as any errors are the sole

responsibility of its author(s). No part or all of this work

should be copied or reproduced in digital, hard, or any

other format for commercial use without written

permission. To purchase reprints of this article please e-

mail: admin@ibima.org.

