
Issues in Software Development Practices
A South African Software Practitioners’ Viewpoint

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

9

Issues in Software Development Practices
A South African Software Practitioners’ Viewpoint

Nehemiah Mavetera, North West University, Mafikeng, South Africa, Nehemiah.Mavetera@nwu.ac.za

Jan Kroeze, University of Pretoria, Pretoria, South Africa, Jan.Kroeze@up.ac.za

Abstract

Software development is a process tasked with

the development of artefacts that are used to

implement organizational information systems.

Depending on the social, economical and

environmental setting, different software

practices are used. These, however, have an

effect on the resultant software product.

In this paper, the authors investigate some of the

software development practices that are used in

South Africa. Through the use of interview

techniques, the study highlighted a plethora of

methods, techniques and tools that are used

during the software development process.

This paper advocates for a paradigm shift in the

way information systems are developed. It

motivates for developers to consider the social

context of organizational information systems

when developing software products. In a social

context, capturing the organizational culture,

context and human aspect contributes to the

system’s responsiveness and its adaptiveness to

the ever changing organizational environment.

Keywords: Grounded Theory Method,

mechanistic system, software development,

actor network theory

Introduction
The software development process is influenced

by many factors: paradigmatic, methodological,

technological, human and, most importantly,

organizational issues. These factors at some

point or other influence the usability of the

software product. Kawalek and Leonard (1996)

discuss a paradox in which software products are

regarded as a hindrance to organizational change

and progress. One reason for this is the fact that

a holistic real world system is forcibly embedded

in a piece of software as a “representation of an

organization”. Using Kant’s Philosophy of

deconstruction (Gasche, 1986), the piece of

software is just a partially understood way to the

organizational system at any point in time.

Unlike software products, organizations are

always in a state of flux (Dahlbom and

Mathiassen, 1993; Kawalek and Leonard, 1996)

and change and duplicate themselves in their

existing environments. Developers need to match

the static nature of software products and the

dynamic nature of the organization to the

dynamic nature of the software model.

This recognizes two paradigms in software

development, that is the current mechanistic

practice and the romantic paradigm. The

software development paradigms, some

approaches and methodologies will be covered in

the discussion. This discussion will be used to

identify the issues that contributed to the

development of currently available mechanistic

software products.

The structure of the paper is as follows: Section

2 gives a brief background of the research

problem. Section 3 discusses software

development practices, organizations and

software products as representations of

organizational information systems. Section 4

discusses three theoretical frameworks: the

Activity Theory (AT), Actor-Network Theory

(ANT) and the Theory of Organized Activity

(TOA) and how they are used to explain the

relationship between the actors in an

organisational information system. The research

design, based on a qualitative field study is

described in Section 5 and the issues affecting

software development in South Africa are

covered in Section 6. Section 7 of the paper

makes some recommendations regarding the

factors that should be considered if the software

development process is to be improved.

The Problem

The nature of the software product is influenced

by the real world artefact it must represent. As

software products are derived from a software

model, this software model should be a true

representation of an organizational system.

Kawalek and Leonard (1996) say that, unlike

Nehemiah Mavetera and Jan Kroeze

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

10

software artefacts, organizations are always in a

continuous state of change. This means that it is

difficult for software products to represent the

true state of an organization at any particular

time. Kawalek and Leonard (1996) and Meso

and Jain (2006) state that software products

representing an ever-changing organisation

should be innovative, adaptive and replicable.

Thus new methods of developing software

products that are adaptive and can evolve

continuously as the organisation changes should

be formulated.

Kawalek and Leonard (1996) and Lehman

(1991) argue for both a technological and

methodological evolutionary viewpoint when

software products are developed. This viewpoint

can ensure a synergic relationship between the

organization and the subsystems that are

implemented using software products. Evolving

systems should incorporate the organizational

context, which is also dynamic. The inclusion of

context in the software design base renders the

software product development process uncertain.

On the other hand, software development

processes have always concentrated on the static

(S-type), that is, on the correctness of the

software product design being regarded as the

only criterion for software product success,

coupled with its fidelity “in a strictly

mathematical sense” to the specification.

Reliance on the S-type paradigm has had an

effect on the conformity of the software product

to the real world, since software products cannot

move from one steady state to another steady

state if they are to implement what occurs in a

dynamic organisation. In other words, software

products cannot be optimised against static goals

(Kawalek and Leonard, 1996).

Kawalek and Leonard (1996) lamented the

failure to develop methods and practices that

produce “instantly adaptable software that is able

to support radically changing demands on a

series of fast developing platforms and

integrating with a series of end user

developments”. In short, organisational context

is always changing, but the software

specification is a static photo reflection of the

time it is signed off, which is later mapped on to

the static software product. This notion has led to

the problem of mapping a world view to a

conceptual view and, lastly, mapping of the

conceptual view to the logical and physical view

of the software product. Section 3 discusses

some of the software development practices are

currently in use in industry.

Software Development Practices

The practice of software development has mainly

been principally guided by the definition given

to software engineering. Several authors

(Schach, 2005; Pressman, 2005; Heineman, 2000

and IEEE) have given software engineering (SE)

a plethora of meanings but all of them borrow

their core meaning from the definition of the

term “engineering”.

All the definitions emphasize issues that are

mechanistically oriented, such as use of the word

design (ECPD), systematicity, quantification and

engineering of software (IEEE), fault-free,

delivered on time and within budget (Schach,

2005). Although Schach (2005) mentions the

need to satisfy users’ needs and Pressman (2005)

refers to a set of methods, the inclusion of the

social and, hence, of the contextual human issues

that are considered in the definitions is not

reflected in their statements.

Schach (2005) suggests that the practice of

software engineering should incorporate

disciplines such as sociology, philosophy,

management and psychology, in addition to

other highly formalized disciplines such as

mathematics, computer science and economics,

to name but a few.

As stated earlier, software development is an

attempt to map the software product to an

organizational system. The inclusion of people

makes organizational systems both very dynamic

and very complex. Organizational complexity is

measured using the concept of requisite variety

(Rosenkranz and Holten, 2007). Requisite

variety views information systems and

organizations as possessing several possible

states in terms of “patterns of behaviour” or

“number of manifestations”. During software

development, it is the developers’ intention to

maintain these patterns of behaviour

(manifestations) in the resultant software

product. On the other hand, the current software

practices canvassed in the development

philosophies of structured, object-oriented and

agile methodologies tend to reduce the

complexity of these information systems by

reducing their requisite variety.

Structured, object-oriented and agile

development philosophies are guided by the

Issues in Software Development Practices
A South African Software Practitioners’ Viewpoint

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

11

principles of systematicity, system formation and

deconstruction (Gasche, 1986), explicit

programming (Agentis, n.d.) and reductionism,

all of which have their grounding in the

functionalist paradigm of Burrell and Morgan,

(1979). The functionalist paradigm, in addition

to idealizing the real world, also enforces

Aristotle’s dictum that the whole is equal to the

sum of its parts, a notion that does not apply to a

general system such as an organization.

For the sake of completeness, some of the terms

used above are described and explained in this

paragraph. Systematicity refers to the extent to

which a system can be regarded as an ordered,

hierarchical arrangement of components. System

formation is concerned with the process of

building up the whole system from its

components. The system building process has to

be ordered and well organized. This explains

Kant’s philosophy of deconstruction, that is,

finding the extent to which the principles of

systematicity and system formation can be

applied during the reductionist processes of

structurally breaking up the system features

during analysis, design and later re-grouping

(re-assembling) them at implementation stage to

recreate the whole, the general system.

Coupled with the principle of requisite variety,

the principle of deconstruction views the original

system (general system) as “not the universal

essence of systematicity; rather it represents the

ordered cluster of traits of possibilities which in

one and the same movement, constitute and

deconstitute systems” (Gasche , 1986).

This leads us to conceive of information systems

as artefacts made up of a continuous connection,

a chained arrangement of its constitutive parts.

These constitutive parts, once fragmented and

reassembled, cannot re-create the original whole.

This contradicts Aristotle’s maxim stated above

that the “whole is equal to the sum of its

constitutive parts”.

Although context determines meaning and

meaning is a by-product of a social context and

both are a continuum and temporal, information

systems, as social constructions, cannot be

constituted fully from the products of their

deconstructions. In its totality, a general system

reconstituted (developed) from the mechanistic

principles of reductionism cannot have unity of

purpose or focus or a horizon of meaning, sense

or context which gives it the attributes of a total

or a whole system (Gasche, 1986).

Although systematicity and system-formation

through the application of reductionism have

been used to construct general systems (Gasche ,

1986), the system components could not be

reunited into “one well rounded-off system”.

Reductionism is the result of the successful

idealization of information systems, although the

resultant information systems lack idealization

(Gasche , 1986). Reductionism reduces the

possible behavioural states of the system under

construction. As a result, the life responsiveness

of the modelled and subsequent system is

reduced.

In order to maintain the variety of the systems,

either the modelled system should have its

variety reconstituted to its original (unmodelled

state) or the system should never be modelled

according to the reductionist principle. Instead,

the implementing tools, as well as the users,

should possess as much variety as the original

systems possessed (Rosenkranz and Holten,

2007). As the latter process is impossible to

execute, the former process becomes the only

practical way of achieving this.

3.1 Use of Automated Tools

As people develop systems, there is an over-

reliance on the use of automated formal tools.

These tools, such as modelling tools and code-

generating tools, have limited the capacity to

which developers can capture a system’s

behavioural characteristics (Lemmens, 2006). It

should be noted that the automated tools are very

good at task definition and task decomposition,

tasks that are addressed at the design and

implementation phases of the system

development process, but which are very poor at

maintaining the requisite variety of the original

life system. The variety which is embedded in

the behavioural aspects of the system can only be

captured at the analysis stage. This process leads

to the development of mechanistic systems.

The field of software engineering has largely

been confined to the hard sciences discipline in

which each software product is viewed as

implementing a system with a goal, a definite

boundary, and which is closed and deterministic.

Nehemiah Mavetera and Jan Kroeze

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

12

This notion disregards the fact that the software

product is not an end but a means to an end: the

implementation of information systems. As a

means to an end, the software product should

take into cognizance the behavioural

characteristics of information systems during its

development. Information systems have multiple

goals and are non-deterministic; their boundaries

are not definitive but are permeable and open

(Du Plooy, 2004). In fact, the discipline of

software engineering should be regarded as a

‘soft discipline’ to which Checkland’s (1999)

soft systems thinking can be applied. In

summary, automated tools are the products of an

engineering process and if used as such, result in

a reduction in the requisite variety of software

products.

3.2 Software Products Component Reuse

Software practitioners are looking at methods

that make use of already developed software

products (component re-use). Current attempts

are limited to the re-use of codes from

component libraries, for example graphic user

interface (GUI) designs. These methods,

however, cannot be used to construct a complete

application from entirely “pre-existing

independently developed components”

(Heineman, 2000). Heineman (2000) also makes

a distinction between software evolution and

software adaptation. Software evolution deals

with the modification of software components,

whereas in adaptation, the developer adapts the

software product for a different application. To

achieve software adaptation, developers need to

know the specific configuration of a particular

piece of software to be adapted. This requires

knowledge about the product architecture, which

is usually a privileged piece of information

retained by the original manufacturer.

Most of the issues that impact negatively on the

usability of software products are tied to the

emphasis by software developers on tractability

and objectivity during the process of identifying

requirements. The field of software development

has a social nature. Software requirements are a

social construction in which human and non-

human actors participate.

 In short, the accepted norms in fashioning

software products include the principle of

deconstruction, systematicity and system

formation, the reductionist principle and the

dependency or over-reliance on functionalism to

define the nature of the organisational system.

On the other hand, the reality about

organisational systems is that people are the

most important element, that there exists a

culture in these systems that needs to be captured

and included in the IS and, lastly, that a specific

context applies to each individual human activity

system to be implemented using the software

product.

Three theoretical frameworks that can be used to

explain the social nature of information systems,

organisations and hence the software products

that represent them are discussed in Section 4.

Theoretical Grounding
Many of the software development practices

discussed above rely on the principles of

deconstruction, systematicity and system

formation, as well as on the reductionist

principles that are all dependent on the

functionalist paradigm. In order to find the most

appropriate software development practice,

systems have to be evaluated using one or all of

the following three theoretical frameworks, that

is, the activity theory (AT), the actor network

theory (ANT) and the theory of organized

activity (TOA). Because of the inclusion of

people as components of information systems,

these frameworks accept the existence and role

of culture, context and pragmatics in the

fashioning of software products.

4.1 Activity Theory

Activity Theory (AT) framework has been used

to explain and facilitate the understanding of

human activity systems. An activity is the

smallest indivisible, action-oriented and goal-

directed process that can be found in a system.

Taking an activity as a basic unit of analysis in

organizations, it is used to explain the

“coherence of individual actions in a larger

social context” (Roque et al., 2003). In this

regard, an information system thus consists of an

assembly of individual activities that work

together synergically to achieve an

organizational goal.

These basic components of information systems

need to communicate through a mediator, in

order to satisfy organizational requirements. The

various interacting components can be referred

to as actors. The role of communication between

the actors is carried by mediators.

These mediators are artefacts usually software

products. These artefacts, in their role as

Issues in Software Development Practices
A South African Software Practitioners’ Viewpoint

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

13

mediators, mediate between individual humans,

between humans, between humans and

technological artefacts (hardware and software)

and between purely technological artefacts. This

state of affairs leads to the understanding that

mediator software products work in a socio-

technical human activity system.

A1

A2

A3

A4

B1

B2

B3

B4

Figure 1 An Activity System: Adapted from Roque et al (2003)

The Organization ={S1 + S2}

Activity System
Activity System

In Figure 1, activities A1-A4 and B1-B4 are

considered as individual activities. S1 and S2 are

distinct activity systems as well. Activity system

S1 is made up of actors A1-A4. Activity system

S2 comprises actors B1-B4. Systems S1 + S2

together give rise to yet another combined

activity system, i.e. the organization.

In practice, goals for activities A1 to A4 and B1

to B4 can be determined a priori but it is difficult

to determine the goals which result from their

interaction to make activity systems S1 and S2

respectively. More so, the combination of S1 and

S2 to make “O”, the whole organization becomes

even more complicated.

It should be remembered that the most important

element of any information system is ‘people’.

By assuming the Aristotelian principle, that is,

that the sum of the parts is equal to the whole,

information system development (ISD)

approaches have failed to consider the human

behavioural aspect of activity systems. In human

psychology and behavioural sciences, the whole

may not necessarily be equal to the sum of its

parts. Determination of the nature of a process

(activity) and its outcomes, while “ignoring

changes in motives and goals, ignoring actors,

human and non-human and ignoring the

multiplicity of disciplinary agencies involved” is

why information systems often fail (Roque et al.,

2003). The software product, as the mediator,

should be fashioned to accommodate all these

factors.

4.2 Actor Network Theory

The actor network theory (ANT) can be used to

explain and justify the social network aspect of

human activity systems. Figure 1 shows that

each activity systems A1 to A4, B1 to B4, i.e.

groups S1 and S2 can again be referred to as

actors. Within each activity, a software product

mediates and creates communication channels, in

turn making each activity system an actor-

Nehemiah Mavetera and Jan Kroeze

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

14

network. In this case, we can regard the software

product as an obligatory passage point (Introna,

1997) and as an artefact that is used to transfer

messages from one point to the other, ensuring

synergy in communication. Latour’s (1999)

actor-network theory (ANT) can be used here as

a theoretical lens to explain the social

interactions and relationships that exist between

each actor in an activity system.

ANT regards each component of an activity

system as an actor that is influenced by another

actor through the mediation of other actors.

These actors could either be human or

technological. The actor as an “author of

inscriptions is a network itself, and centre of

translations. It is also influenced by relationships

established by itself as a node in the network

where other actors participate” (Roque et al.,

2003).

To summarise, the actors participating in the

activity system exhibit both some human

voluntarism and technological determinism

whose interplay results in the emergence of

complex social characteristics. In the spirit of

ANT, any actor, whether loaded with

inscriptions or translations, or the mediator or

mediated, should be fashioned in such a way that

it is allowed to evolve and co-evolve with other

actors. It must be allowed to adapt to the ever-

changing requirements of the environment. All

these responsibilities are given to the software

product. It should also be emphasized that

organizational systems are heterogeneous social

entities that are always in a state requiring

continuous maintenance.

4.3 Theory of Organised Activity

According to Holt (1997), the theory of

organised activity (TOA) is based on human

(organised) activities. Organised activity is a

dependent variable of the social interaction of

people in a particular setting. As applied to

information systems (IS), Cordeiro and Filipe

(n.d.) view the technical aspect of IS as playing a

supporting role to the whole organisational

human activity.

They also describe the human action, that is, the

action performed by a human actor in an actor

network consisting of interests and actors. The

interests and actors are therefore responsible for

the actions observed. It is impossible for

technical machines to have interests. Since

technical machines cannot have interests, they

cannot be assigned any organisational

responsibilities. The end result is that the

technical aspects of IS cannot perform actions

(Cordeiro and Filipe, n.d.). In short, although

technological artefacts may be components of an

organised activity, their failure to ascribe

interests places them at a disadvantage in being

assigned responsibilities for an action.

In conclusion, if the three theories are combined,

the following can be shown:

With respect to AT, activity systems should have

mediators which should ensure the coherence of

actions in the larger organisational context.

These mediators work in a socio-technical

activity system.

ANT acknowledges that activity systems are

social networks. In such actor networks of

activity systems, alongside mechanistic

technological determinism, there is some human

voluntarism that needs to be translated, using

software products as obligatory passage points.

The principle of social evolution should be given

high credence. Adaptation to the ever-changing,

dynamic environment should also not be

neglected.

TOA posits organised activity as a dependent

variable of the social interaction that occurs in

actor networks of human activity systems.

TOA stresses the necessity for any organised

activity to occur in a particular setting, i.e. in a

particular context. In TOA, technological

determinism only plays a supporting role in

human activity.

Organised activity requires that human action be

performed. In any human action, there are

interests, which cannot be ascribed to

technological artefacts but to humans. Hence,

only humans can be given responsibilities in an

activity system.

The important aspects of AT, ANT and TOA

discussions are that software and system

developers should find and use a methodology

that accepts and captures the culture and context

that exist in organisational information systems.

This methodology should be grounded on the

principle that only humans have interests and

that, therefore, only humans can perform actions.

Technological artefacts only play a supporting

role in human actions.

The Research Design

The purpose of this study was to identify the

issues that are taken into consideration in the

development of software products. This research

Issues in Software Development Practices
A South African Software Practitioners’ Viewpoint

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

15

study assumed a qualitative explorative field

study approach. The research approach dictates

how the step-by-step execution of a research

project is carried out. The authors decided to use

the grounded theory method (GTM) since they

discovered that the formulation of a prescriptive

hypothesis or research problem would restrict

their findings. As a research method, GTM met

the purpose and requirements of the study and

the part played by the researchers in the

investigation, as well as data collection and

analysis.

GTM is a generative type of research method. As

discussed by Glaser and Strauss (1967), Strauss

and Corbin (1990), Charmaz (2006) and Olivier

(2004), GTM starts by identifying an area of

interest. Data are then gathered, and trends in the

data which manifest themselves as incidents and

categories of incidents are deduced.

Data were gathered through the use of open

interviews. The target respondents were IT

professionals (academics, software developers,

analysts, designers, project managers, system

users) who had been engaged in this field for at

least five years. This was done to limit the

number of responses that would be purely

academic and not coupled to some industrial

experience in the development and use of

software products.

The first interviews were directed at generating

categories of issues in software development.

The respondents were chosen as they had a

generalist type of knowledge in software

development. Three of the respondents were

academics with some industrial experience and

one was a project manager and IT consultant.

After generation of the categories the remaining

interviewees were chosen from a random sample

of developers, analysts, designers, users and

project managers. The later interviews focused

on consolidating the categories generated from

the first data samples. From the sample

interviews used for this analysis, three people, a

developer, an analyst and a software tester were

retained.

The interviews were transcribed by a

professional transcriber. The analysis was done

using Atlas.Ti5.2, a qualitative data analysis

piece of software. Before the interviews as

primary documents were loaded onto the

Atlas.Ti system, the researchers replayed the

interviews and checked the fidelity of the

transcriptions. This process also helped the

researchers to recreate the interview atmosphere

and enhanced their understanding of the

interview content. In the analysis of the data

obtained from the interviews, quotes which

revealed trends in the data were allocated codes

which were then grouped into families. This

process allowed the researchers to group together

those trends which reflected similar issues that

are encountered during software development.

Any theoretical insights were also recorded as

memos both on the Atlas.Ti system and in a note

pad. These memos allowed the researchers to

find links in the software development issues

discovered. The software development issues

that were raised by the respondents are discussed

in Section 6.

Issues Affecting Software Development

Practices

Table 1 shows the different categories of issues

that were mentioned by the respondents as

affecting the software development process. In

the category section, respondents’ views were

analyzed and coded using a concept or group of

concepts as they apply to software development.

The right hand column in Table 1 shows the

number of quotes that were identified in the

respondents’ data that refer to the category listed

in the left hand column of the table.

Nehemiah Mavetera and Jan Kroeze

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

16

Table 1: Software Development Issues

Category (Code Family) N
o
 of Quotations

Communication Requirements 13

Communication Techniques 11

Development Issues 4

Development Approaches 2

Development Methods 2

Development Techniques 5

Development Tools 3

Interface Issues 2

Syntactic Issues 2

Semantic Issues 2

Pragmatic Issues 0

Contextual Issues 5

Adaptive Issues 2

Software Quality 1

The different categories shown in Table 1 are

described in Section 6.1. These categories were

further grouped into communication issues,

development issues, semiotic issues, quality

issues, adaptive and interface issues.

Communication Issues
Communication issues combine the

communication requirements and

communication techniques categories during

software development. Effective communication

during analysis and design has always been

touted as a success factor in software

development. The question therefore is, ‘What

communication methods and techniques allow

developers to capture and map the world view

requirements to the systems view holistically?’

The respondents cited several issues which

prevail in South Africa. These communication

issues emphasize the need for software

developers to involve the user throughout the

project and highlight the need for tools and

techniques such as brainstorming sessions, mind

mapping, printable white boards, pair

programming, user stories and flyers if the

communication problem is to be solved. The

respondents cited the lack of efficient

communication methods during software

development as a major reason for the failure of

software to satisfy users’ needs. It is also

important to note that from the discussion of AT,

ANT and TOA, the need for a mediator in the

software development process and in the

organizational system itself was emphasized.

Development Issues

Among development issues, we find a set of

development approaches, methods, techniques

and tools. Some of these, such as extreme

programming, pair programming, are already in

use but the major issues highlighted were the

lack of development approaches and methods

that capture the human aspects of a system and

later represent them in a software product.

One respondent said that

“Because software development is not like other

IT fields, like traditional engineering and so

forth, you find that you can’t come up with

blueprints and put them there and say [that]

people are going to develop according to this,

and they follow that because, basically, things

are based on the human brain; it’s more like an

art.”

The above statement highlights the need for

developers not to design software products using

the engineering definitions and requirements

used in other industries. Development methods

should be interactive and should allow the

development of adaptive products. The choice of

a development approach was based on the

schedule requirements of the project and not the

quality and functionality of the product.

However, agile methods though were the

preferred choice of many respondents.

Semiotic Issues

Semiotic issues (Stamper, 1992 and Sowa, 2000)

refer to the signs and symbols that are used for

representation and communication in

organizations. These issues include syntactic,

semantic, pragmatic and contextual issues. The

researchers found that current development

methods emphasize the mapping of the syntactic

software model on implementation platforms,

such as programming languages. One of the

respondents said:

“In our software development processes we tend

to focus almost exclusively on the formal part.

I’ve certainly not been involved in any

information system development project where

we’ve tried to create a computer that can sort-of

adapt its response to different needs without

having to be changed”.

The interviews revealed that there is no language

that can be used to capture the semantic,

Issues in Software Development Practices
A South African Software Practitioners’ Viewpoint

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

17

pragmatic and contextual requirements of

organizations. The findings call for a

methodology that captures culture and context in

information systems.

Adaptive and Interface Issues

The researchers found that many practitioners

want to develop adaptive and evolvable software

products but that the current development

methods and platforms did not support the need

for this. The user interface was touted as a tool

that could be used in communication and also to

portray the functionality of the software product.

It was, however, noted that the interface could

not ensure the development of adaptive and

evolvable software products.

Conclusion and Recommendations

This paper highlights some very important issues

that are found in the field of software

development. It is recommended that a softer

approach to software development be adopted.

Such an approach would embrace the socio-

technical nature of information systems. It

recognises the duality of organisational context

with that of developing software products.

If it is accepted that information systems are a

social construction, software development

methods that recognise this aspect should be

found and used. The prominence of agile

methods and techniques in the responses suggest

that agile methods are a closer approximation to

the development methods that accept the social

nature of organizational information systems.

Another aspect worth discussing is the issue of

semantics, pragmatics and context in software

development. These aspects were rarely

mentioned by the respondents, suggesting that

practitioners’ focus on adaptive and evolvable

software products is very limited. This trend

seems to indicate that mechanistic products will

continue to be fashioned even though they do not

satisfy users’ requirements.

 The problem of software development should be

approached from the humanist paradigm and not

the current functionalist paradigm. Starting with

the philosophical groundings in agile

approaches, a development approach that takes

into account the three semiotic levels of

semantics, pragmatics and context should be

developed. The field of software does not require

a methodological shift but a paradigm shift

(Checkland, 1999) that considers the

romanticism inherent in organizational

information systems.

Acknowledgement

This material is based upon work supported

financially by the National Research Foundation.

1. References

Agentis. n.d. Simplifying the complexity of

Application Development. Developing and

deploying J2EE solutions with Agentis Adaptive

Enterprise TM Solution Suite, Agentis

International, Inc.

Burrell, G., and Morgan, G. Sociological

Paradigms and Organisational Analysis.

London: Heinemann, United Kingdom, 1979.

Charmaz, K. Constructing Grounded Theory: A

Practical Guide Through Qualitative Analysis,

Sage Publication Ltd, USA, 2006.

Checkland, P. Systems Thinking, Systems

Practice: Includes a 30-year retrospective, Wiley,

Chichester, United Kingdom, 1999.

Cordeiro, J and Filipe, J. n.d. “Language Action

perspective. Organisational Semantics and the

theory of organized activity. A Comparison”,

Retrieved 4 May 2008 from:

//ltodi.est.ips.pt/jcordeiro/documents/demo2003

CordFil_Final.pdf.

Dahlbom, B. And Mathiassen, L. Computers in

Context. The philosophy and Practice of Systems

Design, Oxford: NCC Blackwell, United

Kingdom, 1993.

Du Plooy, N.F. Information Technology change

management. University of Pretoria, Pretoria.

(class notes), South Africa, 2004.

Engineers Council for Professional Development

(ECPD), Retrieved 11 January 2008, from:

 //www.abet.org/history.shtml.

Glaser, B. G., and Strauss, A. L. The Discovery

of Grounded Theory: strategies for qualitative

research, Aldine De Gruyter, New York, United

States of America, 1967.

Nehemiah Mavetera and Jan Kroeze

Communications of the IBIMA

Volume 9, 2009 ISSN: 1943-7765

18

Gasche, R. “Infrastructures and Systematicity” in

Deconstruction and Philosophy: The Texts of

Jacques Derrida. John Sallis (eds), 1986. pp 3-

20, Software Engineering Notes, (25:1), January

2000, pp. 55.

Heineman, G.T. A Model for designing

Adaptable Software Components. ACM,

SIGSOFT., 2000.

Holt, A. W. Organized Activity and Its Support

by Computer, Kluwer Academic Publishers,

Dordrecht, Netherlands, 1997.

Introna, L.D. Management Information and

Power, Macmillan Press, Basingstoke, 1997.

Kawalek, P. and Leonard, J. “Evolutionary

software development to support organizational

and business change: a case study account.”

Journal of Information Technology (11: 3),

September 1996, pp. 185-198. Palgrave,

Macmillan.

Latour, B. Pandora's hope: essays on the reality

of science studies. Cambridge, MA: Harvard

University Press, United States of America,

1999.

Lemmens, R. Semantic Interoperability. PhD

Dissertation, ITC, Netherlands. 2006. Retrieved

August 30, 2008, from:

//www.ncg.knaw.nl/publicaties/geodesy/pdf/63le

mmens.pdf.

Meso, P. And Jain, R. “Agile software

development: Adaptive Systems Principles and

Best Practices”. Information Systems

Management (23:3), June 2006, pp 19-30.

Olivier, S.M. Information Technology Research:

A Practical Guide for Computer Science and

Informatics, 2
nd

 ed., Van Schaik, Pretoria, South

Africa, 2004.

Pressman, R.S. Software Engineering: A

Practitioner’s Approach, 6
th

 Ed, McGraw–Hill,

International Edition, 2005.

Roque, L., Almeida, A. and Figueiredo, A. D.

"Context Engineering: An IS Development

Approach", In Proc. of the Action in Language,

Organisations and Information Systems,

ALOIS’2003, Linköping, Sweden, 2003, pp.

107-122.

Rosenkranz, C., and Holten, R. “Towards

measuring the complexity of Information

Systems: A language Critique Approach”. In

Proceedings of International Resources

Management Association (IRMA), 2007, pp. 57-

60.

Schach, S. R. 2005. Object–Oriented and

Classical Software Engineering. WCB/McGraw-

Hill.

Sowa, F. J. “Ontology, Metadata and Semiotics.

Conceptual structures” in Logical, Linguistic and

Computational Issues, Ganter and Mineau,

(eds). Springer-Verlag, Berlin, Germany, 2000,

pp. 55-81 (Lecture notes in AI #1867).

Stamper, R. “Signs, Organisations, Norms and

Information Systems”, In Proceedings of the 3rd

Australian Conference on Information Systems,

Wollongong, Australia, 1992.

Strauss, A. L. and Corbin, J. Basics of

Qualitative Research: Grounded Theory

Procedures and Techniques, Sage, London,

United Kingdom, 1990.

Copyright © 2009 by the International Business

Information Management Association (IBIMA).

All rights reserved. Authors retain copyright for

their manuscripts and provide this journal with a

publication permission agreement as a part of

IBIMA copyright agreement. IBIMA may not

necessarily agree with the content of the

manuscript. The content and proofreading of

this manuscript as well as any errors are the sole

responsibility of its author(s). No part or all of

this work should be copied or reproduced in

digital, hard, or any other format for commercial

use without written permission. To purchase

reprints of this article please e-mail:

admin@ibima.org.

