
IBIMA Publishing

Communications of the IBIMA

http://www.ibimapublishing.com/journals/CIBIMA/cibima.html

Vol. 2011 (2011), Article ID 652178, 8 pages

DOI: 10.5171/2011.6512178

Copyright © 2011 Hassan Najadat, Shatnawi Amani,and Obiedat Ghadeer. This is an open access article
distributed under the Creative Commons Attribution License unported 3.0, which permits unrestricted
use, distribution, and reproduction in any medium, provided that original work is properly cited. Contact
author: Hassan Najadat, e-mail: najadat@just.edu.jo

A New Perfect Hashing and Pruning

Algorithm for Mining Association Rule

Hassan Najadat
1
, Amani Shatnawi

2
 and Ghadeer Obiedat

2

1
Computer Information Systems Department, Jordan University of Science and Technology,

Irbid, Jordan

2
Computer Science Department, Jordan University of Science and Technology, Irbid, Jordan

Abstract

This paper presents a new hashing algorithm in discovering association rules among large data
itemsets. Our approach scans the database once utilizing an enhanced version of priori
algorithm, Direct Hashing and Pruning algorithm (DHP). The algorithm computes the frequency
of each k-itemsets and discovers set of rules from frequent k-itemsets. Once the expert in the
application domain provides the minimum support, the pruning phase is utilized to minimize
the number of k-itemsets generated after completing the scanning of specific size database.
The required data structure is built to implement the hash table. The analysis shows that the
new algorithm does not suffer from the collisions, which lead to high accuracy.

Keywords: Association Rule Mining, Direct Hashing, Basket Market Analysis.
__

Introduction

Association Rule Mining (ARM) is one of
the most popular data mining paradigms
that can be simply defined as the way of
finding the interesting and useful rules
from a large transaction data set as shown
in Han et. al. (2006), Fang et al., (2001), and
Ming-cheng et. al. (2008). To define the
main concepts in ARM, a file consists set of
transactions, T, that each t1 includes all
items, I= {I

1
, I

2
, I

3
,…, In}, purchased by each

customer. A transaction, t, is said to contain

set of items, A, if and only if A t. An
association rule is presented in the form
A�B, where both A and B are set of items

and A∩B =∅. There is a support threshold,
s, provided by an expert where each a rule
holds in transaction set D with support s,
such that s% of transactions in D contains
AUB.

TID Items
1 a , b, c
2 a, c
3 b,d
4 b,c,d

Figure 1: Transactions Data Set.

The support is computing by dividing the
number of transactions that contain all the
items in both A and B over the total

number of transactions. Figure 1 provides a
set of transactions with each unique id. T1
represents the set of items, {a,b,c}, in the

Communications of the IBIMA

2

basket. The frequency of item a is 2 with
support 2/4, while the frequency of c is 3
with support 3/4. The rule A�B has
confidence c in transaction set D, where c%
of transactions in D containing A that also
contain B as provided by Flank (2004) and
Xiaoxun et. al. (2008).That is,

Support (A�B) = P (AUB)

Confidence (A�B) = Support (AUB) /

Support (A)

k-itemset contains k items and the
frequency of an itemset is the number of
transactions that contain the itemset in
work by Anthony et al., (2008) and . The
problem of mining association rules
involves the generation of all association
rule that have support and confidence
greater than or equal to the user-specified
minimum support and minimum confidence
as stated by özel and güvenir (2001).

In general, association rule mining can be
viewed as a process of two-steps. The first
step is to find frequent itemset that is
above the threshold. The second step is to
generate rules from frequent itemsets. For
all frequent itemset, f, the process finds all
nonempty subset of f .For every subset x,
the process generates rules on the form x
�(f – x). Then, it takes the rule if the ratio
of support (f – x) to support (x) is greater
than or equal to minimum confidence as
shown in work of ÖZEL AND GÜVENIR
(2001).

Since the most important task is to
generate frequent itemsets, it has been one
of the most popular research topic in data
mining field. Several algorithms such as
AIS, STEM, A priori, Direct hashing and
pruning (DHP) have been developed by
Jang et al., (1995). This paper provides a
comprehensive view of minimizing the
time of extracting the frequent itemsets.

The rest of paper is organized as follows:
section 2 presents the main related work,
section 3 provides the new perfect hashing
algorithm using with DH algorithm, section
4 provided an enhancement of the new
approach. Generating ARM using New
Perfect Hashing and Pruning Algorithm is

discussed in section 5, then we conclude in
section 6.

Related Work

Association Rule Mining that uses Hash-
Based Algorithm to filter the unnecessary
items can be found in an effective hash-
based for mining association rule in works
by Jang et al., (1995), John and Soon
(2002), and Han et. al. (2006). It gives a
description of Direct Hashing and Pruning
algorithm (DHP), which reduces the
number of items in each pass iteratively.
DHP determines the size of hash table to
distribute items through the table. Jang et
al., (1995) provides a detailed algorithm for
mining association rules using perfect
hashing and database pruning is provided.
DHP is considered an enhancement of the
efficiency of apriori algorithm.

These algorithms generate candidate k+1-
itemsets from large k-itemsets by counting
the occurrence of candidate k+1-itemsets
in the dataset. DHP utilizes a hashing
technique to filter the unnecessary
itemsets to generate next candidate
itemsets. The set of large k-itemsets, Lk, is
used to generate a set of candidate
k+1-itemsets, Ck+1, by joining Lk with itself
on k-1 denoted by, Lk * Lk, to find the
common items for next pass. Increasing
number of items in the Ck+1 will increase
the processing cost of finding the Lk+1.

Scanning all databases and testing each
transaction to determine Lk from Ck is very
expansive process. DHP algorithm
constructs smaller size Ck than A priori
algorithm. therefore it is more faster in
counting Ck from database to determine Lk
as mentioned in Özel and Güvenir
(2001).The size of Lk decreases rapidly as k
increases. A smaller Lk will lead to smaller
Ck+1, so lower corresponding processing
cost. DHP reduces the corresponding
processing cost of determining Lk from Ck
by reducing the number of itemsets to be
explored in Ck in initial iteration
significantly. DHP algorithm has two major
features; making efficient generation of
large itemsets and reducing transaction
database size in effective way as stated in
Jang et al., (1995).

Communications of the IBIMA

3

In DHP algorithm, we find support count of
Ck by scanning the database. The algorithm
also accumulates information about
candidate k+1-itemsets. That means all
possible k+1 subset of items of each
transaction after pruning item are less than
min_support from hash table. Each entry in
hash table consists of number of items that
have been hashed to this entry. Thus far
this table will be used to determine Ck+1-
itemsets from Lk as A priori algorithm. Each
bucket in the hash table consists of number
to present how many itemset have been
hashed to this bucket. A bit vector can be
constructed. If the number of
corresponding entry of the hash table is
greater than or equal to s, set the value of a
bit vector to one.

The hash function is a black box which
produces an address every time you drop
in a key. H(k) transforms key, k, into the
correct address, that is used to store and
retrieve set of records. Figure 2 shows a

representation of the data structure to
provide a direct access to the returned
value of a hash function.

For many cases, the address generated by
the hash function is a random value and
depends in the architecture of the table. A
collision is occurred when two different
keys are transformed to the same address.
In fact, it is impossible to hold two records
in the same space address.

To remedy the problem, there should be a
hashing algorithm to spread the records
over the available address. Hence, finding a
hash table with no collision is the main
issue such as a perfect hash table in work of
Steven (1994). The Efficiency of a hash
function is measured of how efficiently the
hash function produces a value for
elements within a set of data. The
complexity of a hash function is big o of
one. The main characteristic of a hash
function includes simple, quick, and stable.

Figure 2: Hashing Function Example.

New Hashing Algorithm Approach

In this section, we describe a new hashing
algorithm, which finds the hash index of a
K-itemsets. The new hashing algorithm
provides a unique hash value for each K-
itemsets. New hashing function can be used
by the hashing and pruning algorithms like
DHP algorithm. The main idea of the new
hash algorithm is to divide the hash table
Hk virtually in iterative way.

The following constraints should be
satisfied:

(1) the dataset must be presented as
continuous numeric data set,

(2) items in the itemset is sorted in
descending order that means if k-itemset is
(Ik, Ik-1, Ik-2,…,I2, I1) then Ik < Ik-1< Ik-2<…<I2< I1.

(3) Suppose that n is the number of
elements in the data set, and r is the
smallest number in the data set. The
number of distinct k-itemsets will be equal
to:

Equation 1 is used to determine the size of
the hash table (Hk). The number of
different possible for the k-itemsets is
equal to:

Communications of the IBIMA

4

For example, assume there are 10 elements
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10). To create 2-
itemsets, there are 45 possible
combinations. Figure 3 shows all possible
combinations in 10 elements. Suppose that
we have n items, k-itemsets, and Hk table
with size as described in equation (1). In
the first iteration, we divided the table Hk
into (n-k+1) parts, i.e., see figure: 3 we have
9 parts, each part has all k-itemsets that
starts with specific item. In the next

iteration take each part as a new Hk-1 table
and divide it starting with first item of
parent part +1, i.e., if we are in the next
iteration and in first part then (1+1) will be
the first number inside table and end with
(n-(k-1)+1). Repeat the division process
until we get 1-itemsets, take the index of
entire table (after final iteration) by the
value of 1-itemsets. Because the elements
are sorted in the k-itemset, the interred
corresponding index will be computed by
difference between last 2-item-1.

Figure 3: All Possible Combinations of 2-itemsets

The following is an abstract example that
describes the process of indexing k-

itemsets (Xk, Xk-1, Xk-2… X2 X1) as shown in
figure 4.

Figure 4: Hash Table Divisions

The start index for each part and the size
taken are computed as shown in figure 5.
Si can be computed using equation (2), In
general,

Communications of the IBIMA

5

Figure 5: Size And Start Index of the First Iteration

Figurer 6: Size and Start Index of Next Iteration

Si’ can be computed using equation (2). In
general

Si’’ can be computed using equation (2). In
general

From the equation 5, a general formula for
any iteration can be as follows:

Communications of the IBIMA

6

Figure 7: Third iteration Computation

The index in the 2-itemsets is computed in
final table by taking the difference between
the two items in the itemset (x1 – x2) (x1 >
x2) -1 as follows:

The new algorithm's accuracy gains the
optimal ratio, where the collision will not
occurred. This will be used to count
frequency of k-itemsets, which will give
reliable result and simple arithmetic
operations to compute the actual index of
each k-itemsets. The implementation of the
algorithm allocates large memory space for
each Hk hash table.

NHA Enhancement

The hash table was implemented
dynamically by using a specific data
structure using root, after, and before
Pointers, valid bit array and nodes. Each
node has numeric variable to save the
frequency of each k-itemsets and the next
and previous pointers.

0 0 1 1 … 0

Figure 8: Valid Bit Array

Where N is the number of items. Initially,
we have zero value for all different
possibilities of k-itemsets. The first k-
itemsets will be one which represents the
k-itemsets frequency in hash table. The
following operations continue the process:

• Root and tail pointers points to Nil
initially,

• Compute first k-itemsets element,

• Create new node, Root and tail
point to the new nod

• Change corresponding valid bit to

1.

To generate next k-itemsets, compute index
of k-itemsets based on NHA, and then check
if it’s in the valid bit array. If the value is
one, so it is in the list search and increase
counter by one. Else, insert it into dynamic
array list and increment counter by one. To
insert node, if hash value greater than
maximum value, add node in the end of list,
let tail pointer point to it and change
corresponding valid bit to be 1. Else,
compute corresponding index of k-itemsets
i using the hash function, change valid bit
to be one then compute summation of all
indices less than computed index i. of valid
bit array.

Communications of the IBIMA

7

Figure 9: Hash lists Nodes

Data Structure of new Hash Algorithm

The data structure is described as follows:

• Node class or struct consists of next

pointer, which points to next adjacent
node in dynamic list.

• Hash class For each hash table we define

an instance of hash class, which includes
there pointers such as 1) pointer is used
to point the first node in the hash table
which implemented as linked list, and 2)
the other two pointers before and after
are using when add new k-itemsets to
the hash table. The following represents
the main method of Hash class:

a. Increment index metod: to increase the

corrosponding index of k-itemset, send
index (computed by hash NHA) as
parameter. Increment index method
computes right position by using
search_node method and then calls
insert_node method.

b. Method search_node: to compute position
where to insert node in hash list. It is
computed by summation of valid bit
array from the beginning to the index
parameter.

c. Insert_node Method: it has many cases.

Case 1, when hash table(list) is empty,
creat new node, let root and tail point to it,
increment data variable (counter) by one
and finally change valid bit to be one for
this itemset.

Case 2: there is itemsets in hash list, we
have two choices first one that this
itemsets inserted before(valid bit is one) so
get its position and increment data by one.
Second choice when no node for this

itemset, add new node for them, increment
data by one and change corrosponding
valid bit to be one.

• We define a valid bit array for each
hash table with initial value equal to zero.
When add new k-itemsets, the
corresponding valid bit will be changed to
one.

Using the data structure to implement the
hash table, it reduces the size of hash table,
which will solve the problem of unused
space and in the same time will be no
collision.

For any k-itemsets if we complete more
than C% scaning of database, where C% is
greater than (100% - min_supp), the k-
itemset has probability to be frequent k-
itemset if min_supp of it until now plus
remaining percantage database (not
scanned data) is greater than or equal user
minimum_support.

This hashing technique can be used with all
enhancment algorithm of a priori like DHP
and others. But, all these algorthm need to
scan database for many times, so it takes a
lot of time to find association rule. The
proposed new Perfect hashing and Pruning
algorithm for mining association rule scans
database only one time.

Generating ARM Using New Perfect

Hashing and Pruning Algorithm

The new algorithm is used to scan database
only one time to mine association rule
based on hashing technique. In the first
phase, the algorithm scans the database to
compute the frequency of each k-itemset
for all k and saves it in the hashe table. In
the second phase, it finds all interesting
rules.

Communications of the IBIMA

8

Phase 1: for each transaction of database,
find all k-itemsets k = (1, 2, 3… length of
transaction). Then, compute index of k-
itemsets and increase corresponding index
in Hk by one. Store them in array list. After
completing the database scanning, then
perform the followings:

(1) delete all non frequent 1-itemset from
array list,

 (2) in each Hk hash table, delete all non
frequent nodes and change corresponding
valid bit to zero. In addition, after complete
c% of database, prune k-itemset by
determining (k-1)-itemsets.

Phase 2: use frequent 1-itemset to find all
possible rules.

Conclusion

We provided a perfect hash function with
minimum collision. The proposed
algorithm does not require many
arithmetic operations.

A distribution of itemsets over all hash
tables is inexpensive. We defined a new
data structure to implement a hash table.
The implementation is aimed to reduce the
size of normal implementation of any
hashing technique that has been used.

Also, using this data structure may rehash
the table by deleting all nodes of non
frequent itemsets after a scanning a
specific percentage of database. The
hashing algorithm and its data structure
can be used with enhanced algorithm like
PHP and DHP. We implemented the new
algorithm to generate ARM by scanning
database once. The new algorithm is
designed based on the new hashing
algorithm that does not suffer from the
collision, which leads to high accuracy and
reliable.

References

Flank, A. (2004). "Multirelational
Association Rule Mining," (online) from
http://www8.cs.umu.se/education/examin
a/Rapporter/AntonFlank.pdf [Accessed
20th February 2010].

Han, J., Kamber, M. & Pei, J. (2006). Data
Mining: Concepts and Techniques, 2nd
edition, Morgan Kaufmann.

Holt, J. D. & Chung, S. M. (2002). "Mining
Association Rule Using Inverted Hashing
and Pruning," Elsevier Information

Processing Letters, 83(4), 211 – 220.

Lee, A. J. T., Wang, C., Weng, W., Yi-An C. &
Huei-Wen, W. (2008). "An Efficient
Algorithm for Mining Closed Inter-
transaction Itemsets," Data & Knowledge

Engineering, 66(1), 68-91.

Liu, F., Lu, Z. & Lu, S. (2001). "Mining
Association Rules Using Clustering,"
Intelligent Data Analysis, 5(4), 309-326.

Özel, S. A. & Güvenir, H. A. (2001). "An
Algorithm for Mining Association Rules
Using Perfect Hashing and Database
Pruning," Proceedings of the Tenth
Turkish Symposium on Artificial
Intelligence and Neural Networks,
Gazimagusa, T.R.N.C., June, 257-264.

Park, J. S., Chen, M. & Yu, P. (1995). "An
Effective Hash-Based Algorithm for Mining
Association Rules," ACM SIGMOD Record

archive, 24(2), 175 – 186.

Seiden, S. S. & Hirschberg, D. S. (1994).
"Finding Succinct Ordered Minimal Perfect
Hash Function," Elsevier Information

Processing Letters, 51(6), 283-288.

Sun, X., Li, M., Wang, H. & Plank, A. (2008).
"An Efficient Hash-Based Algorithm for
Minimal K-Anonymity," Proceedings of the
thirty-first Australasian conference on
Computer science, 01 01 January,
Wollongong, Australia, 101-107.

Tseng, M., Lin, W. & Jeng, R. (2008).
"Incremental Maintenance of Generalized
Association Rules under Taxonomy
Evolution," Journal of Information Science,
34(2),174-195.

