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Abstract 

 

We propose a novel method - F2C - that can process the only information available in the early 

stages of a young high-technology venture: linguistic expert knowledge. This knowledge is the 

basis for the determination of an appropriate discount rate for the valuation of high-technology 

ventures in early stages of venture capital investments. A specific tool named Fuzzy Cognitive 

Map (FCM) is used therein to capture and depict the expert knowledge. Consequently, the FCM 

is transformed into a system of Fuzzy Inference Systems. These systems allow eventually 

obtaining a crisp value for the crucial parameter, the discount rate r. First practical applications 

were carried out valuing a biotechnology venture. The obtained results are promising, though 

the need for further research efforts became obvious. 
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Introduction 

 

There is a substantial need with key 

decision makers for support instruments 

that are robust, reliable, and above all, 

applicable in business real life. Particularly, 

in the Venture Capital world, decisions that 

are based on unreliable or even wrong 

information can lead to significant losses of 

the invested money. An applicable support 

tool is particularly essential when it comes 

to valuing a young high-technology venture 

before an investment transaction. The 

inherent peculiarities of small high-

technology ventures in venture capital 

transactions are analyzed exemplarily in 

[13]. 

 

Due to the lack of historic data, tangible 

assets, and the limited comparability to 

grown mature companies even in the same 

industry field, there is a need for specific 

valuation methods for young high-

technology companies. A concept that has 

experienced a broad acceptance with 

practitioners in the recent years is based 

on the time-value-of-money-concept. A 

present value PV of a company is the result 

of the added discounted cash flow CF the 

company is going to earn in the next i 

periods (Equation 1). 

 

 
 

Equation 1: Present Value of Future Cash Flows 
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Although being rather simple, the challenge 

lies in the estimation of appropriate 

parameters. Besides the uncertainty of the 

future cash flow, the most significant 

impact on the result has the discount rate r. 

Particularly with valuing high-technology 

ventures, the discount rate not only reflects 

the minimum return rate expected by the 

investor, but also includes compensation 

for the risk taken by the investor and the 

added value the investor provides by, for 

example, management support and access 

to qualified networks. Even a premium for 

the limited liquidity of the early stage 

investment in comparison to conventional 

investments is oftentimes required (see 

Figure 1). 

 

 

 

Problem 

 

There is no practicable, distinct and 

unambiguous method to determine the 

discount rate r especially in the context of 

early stage venture valuation of high-

technology companies. In particular, there 

exists hardly a method that explicitly 

accounts for the different components of r. 

In Figure 2, it becomes obvious that non-

deterministic subjective approaches such 

as Best Practices or Minimum Expected 

Returns dominate. Although being fast and 

easy to apply, these procedures are always 

prone to subjective misjudgements. In 

addition, they generally lack transparency 

and unambiguity. Furthermore, they do not 

support explicitly in differentiating 

between the relevant components of the 

discount rate r. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1: Composition of the Discount Rate R over the Different Stages of Venture Capital 

 
 

The only theoretically founded objective 

method based on the Capital Asset Pricing 

Model (CAPM) is obviously not very 

common with practitioners as the 

frequency of use indicates (see Figure 2). 

This model allows the determination of a 

theoretically appropriate rate of return of 

an asset r. In detail, the model takes the 

asset’s sensitivity to non-diversifiable risk 

as well as the expected return of the 

market rM and the expected return of a 

theoretically risk-free asset rf into account. 

The risk premium is given by the 

sensitivity to the non-diversifiable market 

risk (β) and the return of the market (rM). 

The appropriate discount rate r is then 

calculated by r = rf + (rM * β). This 

fundamental feature principally 

corresponds with the previously 

mentioned composition of an adequate 

return-rate. The limited dissemination of 

this method, however, may be generally 

due to the harsh assumptions of the 

underlying theoretical model and the need 

for appropriate data to obtain meaningful 

results. 
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Figure 2: Frequency of Use – Conventional Methods for the Determination of r [11] 

 
 

State of the Art 

 

The current research still focuses mainly 

on the application of the CAPM. The 

effectiveness and suitability of this model, 

however, it has been controversially 

criticized since its appearance (see 

exemplarily [3], [4], [5], or [6]). But despite 

the obvious limitations, the CAPM is still 

used to model and calculate general 

characteristics of Venture Capital 

investments (see exemplarily [7], [8]), 

although, its limited applicability in the 

field of venture valuation, has been already 

revealed. Particularly, the clear and 

comprehensible determination of the 

parameter _ in early stage venture 

valuation is seen as extremely challenging: 

usually βs can be easily calculated from the 

historic returns if the company is publicly 

traded. High-Technology ventures, 

however, are not publicly traded. In 

addition, due to their youthfulness, there is 

no meaningful historic data on its 

development. Usually, in such case, there is 

no historic data available for the β of 

comparable publicly traded companies or 

even industry-specific betas (β) can be 

used. But these approaches are rather 

meaningless since the risk profile of known 

(i.e. mature) companies is not comparable 

to young ventures [12], [2]. 

 

Despite this obvious research gap, there 

haven been only a few endeavours made to  

 

present a tailor-made solution particularly 

for early stage ventures. One of the most 

recent approaches is proposed by Sung [1]. 

The author presents an attempt that 

directly addresses the issue of a risk-

adjusted discount rate for the valuation of 

small-sized technology firms. Particularly, 

he focuses on the significance of the 

technological risk in the context of high-

technology venture valuation. 

 

Although aiming at an obvious research 

gap, this paper does not completely resolve 

the described shortcomings. In fact, it 

suffers from the highlighted deficits as well 

since this work principally bases upon the 

disputable CAPM and its corresponding 

enhancement, the Weighted-Average-Cost-

of-Capital approach (WACC). In detail, the 

paper mainly concentrates on elaborating a 

statistical framework to estimate more 

precisely the β parameter out of data 

available for comparable markets and 

companies. Besides this statistical 

assistance, the venture’s technological risk 

is captured only by a ranking according to 

the actual value of three criteria: 

technology competitiveness, capability of 

commercialization, and R&D-support 

organization. As a consequence, this 

method cannot help overcoming the 

challenges associated with high-technology 

venture valuation. It namely relies on the 

assumption that by using the CAPM 

approach, an appropriate discount rate can 

be obtained. The only thing that matters is  
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the quality of guessing the parameters. 

Moreover, this paper also neglects taking 

explicitly the different components of the 

discount rate into account. 

 

Aim of this Paper 

 

We propose a novel approach that might 

help overcoming the aforementioned 

shortcomings with conventional discount 

rate determination in the context of young 

high-technology venture valuation. By 

applying fuzzy methods we try to avoid 

making unrealistic model assumptions, and 

thus, obtaining unrealistic results. Due to 

this well-founded theory, our method 

offers traceability, clearness, and 

robustness. Furthermore, the use of expert 

knowledge as the only reasonable source of 

information available shall provide broad 

applicability. The actual influence of the 

different premiums on r is explicitly 

accounted for by integrating multi-causal 

and non-linear coherences between. The 

actual values of the factors and their 

interconnectedness are derived from the 

only information reasonably available: the 

assessment of the key personal involved in 

the actual venture: entrepreneurs, 

scientists, investors, and neutral mediators. 

 

To capture the complex, multi causal 

relationships, a known concept is used: 

Fuzzy Cognitive Maps (FCMs). But, in 

contrast to conventional applications 

(Knowledge Mapping, Decision Support), 

the FCM concept is enhanced by an 

individually developed method to calculate 

a “crisp” value out of the captured 

knowledge. It is based upon rule-based 

Fuzzy Inference Systems (FIS) and a 

specific methodology to transform an FCM 

into a network of standardized FIS. 

 

Contribution 

 

Our contribution to the current state-of-

the-art contacts two dimensions. First of 

all, we use a novel method to transform 

methodically clear and unambiguous an 

FCM into a network of FIS. This can make 

our approach to an enhancement to and 

concretion of the procedures proposed by 

Eloff et al. [22] and Khan and Khor [14]. 

Our framework, though, is an alternative 

proposal to Carvalho and Tomé [17]. 

Second, by using this methodological 

framework, we propose a completely 

different way to determine an appropriate 

discount rate r for venture valuation 

methods. Our approach can be seen as an 

entirely novel alternative to conventional 

methods. This may open up completely 

new paths to venture valuation particularly 

at early stage venture capital investments. 

 

Structure 

 

In Section II, the fundamentals of FCMs are 

explained. Upon these preliminaries, the 

specific methodology is presented that 

allows a transformation of an FCM into a 

FIS. In section IV, we report on a first 

practical application of this method. We 

describe our procedure and the results 

attained so far. In the final section V, we 

review our results so far. In addition we 

briefly outline the work that is still to be 

done in order to present a fully equivalent 

alternative to conventional methods. 

 

Methodology 

 

Preliminaries 

 

FCMs are fuzzy graph structures for 

representing conceptual pictures of 

interconnected complex systems. They 

work by capturing and representing cause-

and-effect-relationships. A FCM pictures 

the way of human thinking and 

incorporates intuitive and heuristic expert 

knowledge. They are a combination of 

Neuronal Networks and Fuzzy Logic. FCMs 

consist of various nodes (concepts) 

connected by directed graphs (edges) with 

feedback. These connections stand for the 

causal relationship between the nodes. 

Causal relations always involve change: the 

result of a causal effect is always a 

variation in one or more concepts/ nodes. 
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Figure 3: Exemplary Fizzy Cognitive Map 

 

Therefore, FCMs show the variation of a 

concept’s value, not the concept’s absolute 

value. Each node has a fuzzy value ranging 

from [-1; 1]. Each edge is associated to a 

fuzzy weight w � [-1; 1]. A positive weight 

stands for a causal increase; a negative 

weight indicates an opposite causal 

decrease (See Figure 3 for an exemplary 

FCM). The causal structure of an FCM is 

formally expressed by the corresponding 

Adjacency Matrix E: 

 

 
 

Equation 2: Adjacency Matrix E 

 

The capability to capture the 

characteristics and the behaviour of 

complex systems has led to two general 

application forms: Knowledge Mapping 

(KM) and Decision Support Systems (DSS) 

[15]. Both application types have been 

applied in various fields: Politics, 

Environment issues, IT Security, 

Diagnostics, and even in Finance [28]. 

These applications, however, suffer from a 

major restriction. Almost all current FCM 

applications are limited to bivalent or 

trivalent concept values (0,1) or (-1,0,1). 

These restrictions limit FCMs to the 

representation of systems that use only 

simple monotonic and symmetric causal 

relations between concepts. But many real 

world causal relations are neither 

symmetric nor monotonic. 

A fuzzy-rule-based approach provides a far 

more adequate way to model real-world 

causal relationships. A Fuzzy Inference 

System (FIS) makes use of fuzzy rules in 

which real world coherences are tied 

together, e. g., ”IF the technology is 

relatively new, THEN the risk of the 

Venture is moderately high”. All the rules 

define patches that cover the characteristic 

curve of an arbitrary complex system. The 

better the rules cover the curve, the 

smarter the artificial intelligence system. In 

practice, these rules are called rule-of-

thumb or heuristics. They reflect an 

expert’s action to control or an observation 

of a system. But, identifying and 

formulating rules that fully describe the 

behavior of complex systems is the key 

issue in Fuzzy Engineering. But at the same 
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time, it is known to be the natural 

bottleneck of Fuzzy Engineering [25]. 
 

Until now, there have been only some 

approaches to use the knowledge captured 

in an FCM to design and build a more 

adequate rule-based Fuzzy system. 

According to Eloff et al. a FCM is an ideal 

starting point to derive a rule base form: 

the edge between two nodes represents a 

fuzzy IF-Then-Rule [22], [16]. This 

“practical” approach, however, leaves the 

user in the lurch when it comes to typical 

challenges such as multiple causal relations 

and non-linear causal behaviour. A more 

sophisticated approach is proposed by 

Carvalho and Tomé: Rule-Based Fuzzy 

Cognitive Maps (RB-FCM) [17], [19], [18], 

[21]. Such a FCM consists of fuzzy nodes 

(concepts) and a fuzzy rule base which 

relate nodes. Each concept contains several 

membership functions which represent the 

concepts’ possible values or the possible 

change of its values. To adequately model 

real-world causality (nonlinearity, non-

symmetric opposition, similarity, 

implication), both authors introduce a 

novel concept: Fuzzy Causal Relation (FCR) 

and Fuzzy Carry Accumulation (FCA). 

These two concepts mainly offer a resort to 

the problem of causal overflow: what 

happens to an effect node C, if the two 

cause nodes A and B effect C ”very much” 

and there is no such a change in the 

concept value as ”more than very much”. 
 

In comparison to a classic FCM, the major 

advantages of the RB-FCM are more flexible 

modelling of causal relations and improved 

stability regarding the application for 

scenario simulation purposes. Though, this 

approach has also some deficits. It is rather 

complex and its computation is time-

consuming. Moreover, it does not explicitly 

address the issue of how to cope with  

complex multiple causal relations. A 

slightly different model is proposed by 

Khan and Khor [15], [14]. In contrast to the 

RB-FCM, in which the states of the nodes 

are seen as additive and cumulative so that 

the state values can be ’carried over’ when 

they exceed a maximum, both authors 

suggest that each concept has a maximum 

and a minimum limit. This limit is 

expressed in form of a weight vector such 

that the total of the causality is within the 

interval [0; 1]. By proposing the 

Aggregation Operator,  

A: (c1;…, ci) = ∑
=

n

i
iidw

1

,  

they explicitly address the issue of 

causality in the multiple input case. But, at 

the same time, they neglect to address the 

issue how to derive a rule base from an 

existing expert FCM. 

 

Novel Framework 

 

1. Interpretation of Nodes and Edges: We try 

to overcome the previously highlighted 

shortages of conventional FCM 

transformation by a specifically developed 

method [20]. The major assumption of the 

novel framework is that there is no central 

rule base that represents the causal 

relations between the nodes. In contrast, it 

is assumed that each causal link can be 

represented by a standardized rule base. A 

causal link of the causal strength wij 

between two nodes Ci and Cj depicted by an 

arrow in an FCM is represented by a rule-

based Fuzzy Inference System FISij (see 

Figure 4). Hence, each causal link in an FCM 

can be translated into a corresponding 

single-input-single-output Fuzzy Inference 

System. By applying this procedure, every 

highly-individual FCM can be translated 

into a network of Fuzzy Inference Systems. 

 
 

 
 

Figure 4: Representation of a Single Causal Link by an FIS 
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2. Multiple Causal Inputs: To cope with 

multiple causal inputs, a method for 

combining multiple causal inputs is 

proposed being similar to the aggregation 

operator A proposed by Khan and Khor  

 

[15], [14]. Initially, all incoming edges are 

transformed to individual FIS according to 

the causal weight associated to them. 

Afterwards, the results of these FIS are 

combined using the aggregation operation. 

 

A = ∑
=

n

i
iidw

n 1

1
 

 

Equation 3: Aggegation Operator A 

 

Thereby, the incoming signals can be 

weighted according to their (assumed) 

importance (Figure 5). Usually, the signals 

are all treated equally. The outgoing signal 

represents the combined causal effect of 

the preceding cause nodes on the following 

effect node. 

 

 

 
Figure 5: Interpretation of Multiple Causal Links 

 

3. Rule-based Causality: Each of these 

causalities is represented by a specific rule-

based Fuzzy Inference System. The type of 

causality (positive or negative) as well as 

its strength is expressed by a specific rule 

base. The rule base is made for a single-

input-single-output-Fuzzy Inference 

System. On the one hand, this decreases the 

calculation power needed to calculate a 

whole network of FIS. On the other hand, it 

reduces the risk of rule explosion. 

 

The input and output parameters of the FIS 

correspond with the Level of Activation of 

the actual node. They are represented by I, 

whereas J denotes the output parameter 

level of activation of the effect node. Both 

parameters are defined on the basic set XI, J 

= [-1; 1] � R. An input signal I = 1:0 stands 

for the highest activation of the actual 

concept. It can correspond with the highest 

growth of the underlying concept. In 

contrast to that, an input value I = -1:0 

expresses the highest activation of the node 

in the negative sense; it corresponds with 

the largest decline of the actual concept. 

The parameters I and J can take 21 

parameter values each. Every step at 0.1 is 

represented by a parameter value. The 

output signal J equals the value of the 

concept node Cj and is, thus, possibly the 

input signal I of a successive FIS. 



Communications of the IBIMA 8 

Each parameter value is mapped onto a 

Fuzzy Set. The corresponding membership 

function is bell-shaped or Gaussian. This 

form of membership function provides a 

more realistic modeling of the underlying 

concept values and their corresponding 

membership degrees. At the outer borders 

of a fuzzy set, bell-shaped membership 

functions allow for a less harsh end and  

 

beginning of the membership. But, the 

closer the value gets to center c of the fuzzy 

number, the stronger the membership 

degree grows. This non-linearity 

corresponds with the real-world 

understanding of fuzzy observations. The 

set of membership functions representing 

the input and output parameter I and J is 

shown in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 6: Membership Functions of the Input I and Output J Parameters 

 
Next, the causal linkage between the two 

parameters has to be defined. To model 

(non-linear and non-symmetric) causality a 

specified rule base is designed. Each 

causality, and hence each causal strength is 

represented by a specific rule base. The IF-

part of the rule consists of only one input I. 

This signal equals the fuzzy number of the 

concept node value Ci. Due to the 

discretization in steps of 0.1, the rule base 

is limited to a reasonable number of rules. 

Correspondingly, the THEN-part of the rule 

also consists of only one defuzzified output 

signal J. To determine the individual rule 

bases, the general understanding of the 

causal relationship between input and 

output parameter has to be highlighted. A 

positive causal relationship between Ci and 

Cj means that if Ci increases (less/ much) 

then Cj also increases (less/ much). A 

positive causal relation that has the causal 

strength wji < 1 leads, thus, to a weakened 

increase of Cj in case Ci increases. This 

weakening effect grows the lower the 

causal strength is. For example, a concept 

value of Ci = 1:0 may lead only to a concept 

value Cj = 0:2. The same holds true for a 

decline when there is a positive causal 

relation. An exemplary rule base 

representing a positive causal strength w = 

1:0 and the corresponding output proTile is 

shown in Figure 7 and Figure 8, 

respectively. Analogue to this example 

there are specific rule bases for all possible 
causal weights w; w � [-1; 1]. In the herein 

proposed methodological framework, there 

is a total of 11 speciTic rule bases 

(increment of causality is 0.2, ranging from 

-1 to 1). 

 

 

 

 

 

 



9 Communications of the IBIMA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Rule base for causality wij=1.0 

 

 

Figure 7: Rule Base for Causality wij=1.0 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Output Profile of the FIS for Causality wij=1.0 

 
 

4 Crisp Output: To eventually obtain a crisp 

output, a specified component is needed: a 

final FISf. Its purpose is to take all directly 

preceding causal links and to ’calculate’ a 

final output value. The input value is 

obtained by aggregating all incoming 

causal links (inputs) by using the 

aggregation operator (Figure 9). Its value 

ranges from +1 (highest increase) to -1 

(highest decrease). The input value is 

mapped onto the corresponding output 

value by a specific rule base depending on 

the actual context. By applying this 

methodological framework, it is possible to 

describe and model any complex system 

and its behavior by means of FCMs. 

Subsequently, this model of a complex 

system can be analyzed quantitatively, that 

is, a crisp value is returned. 
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Figure 9: Aggregation and Final FIS – Output of a Crisp Value 

 

Application 

 

We applied the aforementioned framework 

to obtain an appropriate discount rate for 

the valuation of a specific biotechnology 

venture. Therefore, we substantiated the 

risk component. We assume that the risk in 

the early stage of a high-technology 

venture is inseparably connected with the 

proof of technology. The company will 

certainly fail if the technology that shall 

form the company’s basis does not work 

properly. In this special case, the proof of 

technology is attained when it is feasible to 

produce stable and selectively functioning 

enzymes. For that reason, the simple node 

Risk is substituted by a more detailed 

network of different factors that impact the 

risk of this actual venture. Regarding the 

detailed Technology Risk, specific starting 

points are given.  The pertinent literature 

(for example [9], [10]) names three main 

success factors for the successful 

development of a young technology 

venture: Team Experience, Technical 

Equipment, and Affiliation to a Research 

Institute (see Figure 10). So, the 

appropriate discount rate r is influenced 

not only by factors: Liquidity and Added 

Value, but also by the detailed 

Technological Risk. We asked then the 

involved scientists, investors, and a neutral 

mediator to identify the risk-influencing 

aspects and the type and strength of causal 

relationships between them. Starting from 

the given nodes, the experts are asked to 

develop their individual FCMs. 

 
 

Figure 10: Exemplary FCM – Biotechnology Venture 
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The intermediary nodes and the causal 

connections they create are supposed to 

eventually link to the final node 

representing the discount rate r. Each of 

the interviewed experts eventually drew an 

individual FCM from which the 

corresponding adjacency Matrices Ei could 

be easily derived. The final FCM to be 

transformed is then obtained stepwise. 

First, a preliminary adjacency matrix is 

obtained by  

 

∑
=

=
i

n
ipre E

i
E

1

1
 

 

Equation 4: Preliminary Adjacency Matrix 

 

Though, the resulting causal weight wfin is 

not a simple product of adding the 

individual causal weights wij of the i 

experts. In fact, the causal weights are 

obtained by a discrete discrimination in a 

second step. This allows for a consistent 

conversion of the FCM into a FIS (see 

Equation 5): 

 

 

 

 

 

 

 

 

 

 
 

 

Equation 5: Discrete Discrimination of the Causal Weight Wfin 
 
 

 

 

 

 
 

 

 

 

According to the previously highlighted 

methodological framework, the resulting 

FCM (see Figure 10) is then transformed 

into a network of FIS. The ’final’ FIS (see 

Figure 9) is of particular importance. The 

’incoming’ factors are aggregated according 

to Equation 3 and subsequently, mapped 

onto empirically observed discount rates. 

The mapping is realized by a specific set of 

rules. The corresponding membership 

functions for the discount rate r are 

depicted in Figure 11. This rule base, and 

thus, the behavior of the final FIS are 

designed to match the observed correlation  

 

 

between the influencing factors and the 

required return of Venture Capital 

investment [11]. A discount rate r can be 

computed when realistic values ranging 

from �1 to 1 are inserted into the starting 

nodes and the two nodes denoting the 

remaining components Liquidity and the 

Value-added premium. These values are 

also derived by the expert interviews. Their 

qualitative assessments on the actual value 

of the starting nodes are translated into 

numeric values according to Table I. These 

values trigger the network of FIS. The 

output is the wanted individual discount 

rate r. 
 

Table 1: Lingusitic and Quantitative Weights (Absolute Values) 
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First Results 

 

In a first computer-based simulation using 

the numerical simulation software 

SIMULINK™ including the Fuzzy Logic 

Toolbox we attained a convincing output 

proTile of the Tinal FIS (see Figure 12). This 

FIS network showed stable behaviour and 

a crisp final result could be obtained. As it 

can be seen there is a fundamentally 

positive coherence between the assumed 

influence factors and an appropriate 

discount rate. But, the growth of the 

discount rate is not constant. In fact, it can 

be seen that especially, the higher the risk 

grows; the sharper becomes the increase of 

the discount rate r. This behaviour 

corresponds with the empirically observed 

required discount or return rates of 

Venture Capital investors [11]. 

 

 
Figure 11: Membership Functions of the Output Parameter Discount Rate r 

 

 

Conclusions 

 

Our method goes far beyond the 

conventional qualitative answer to ’what-if’ 

scenarios. In detail, we showed that it is 

feasible to obtain a crisp value out of 

linguistic expert information. Based on the 

previously highlighted methodological 

framework, it was shown that an FCM is 

more than a ’hint’ from which a rule base 

for a FIS can be derived. In fact, by using 

the methodological framework, we 

achieved that an FCM can be transformed 

methodologically clear and unambiguously 

into a network of FIS. A first application 

was found in the determination of an 

appropriate discount rate r for venture 

valuation in the field of early stage high-

technology ventures. By doing so, we could 

propose an alternative approach to 

conventional methods for determining an 

adequate discount rate r. The main  

 

 

advantage is that our method does not 

depend on vast statistical data. In fact, our 

method only relies on linguistic expert 

information and waives unrealistic model 

assumptions. This feature makes our 

approach unique regarding applicability. 

The first simulation results confirms the 

suitability of our approach to model 

realistically complex systems: the resulting 

discount rate r shows a behaviour that 

fundamentally equals the empirically 

observed correlation between the three 

components, dominated by Risk, and the 

discount rate r. 

 

Nevertheless, a lot of work is still to be 

done. Although showing promising results 

in simulations, the practical superiority has 

still to be validated in an empirical study. 

Those studies can also help figuring out 

when our method can be used 

complementary or even as a stand-alone 

solution. 
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Figure 12: Simulation Results – Discount Rate r 
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