
IBIMA Publishing

International Journal of Interactive Worlds

http://www.ibimapublishing.com/journals/IJIW/ijiw.html

Vol. 2011 (2011), Article ID 897069, 30 pages

DOI: 10.5171/2011.897069

Copyright © 2011 Diana S. S. Santos, Márcio Dionísio, Nuno Rodrigues and António Pereira. This is an open

access article distributed under the Creative Commons Attribution License unported 3.0, which permits
unrestricted use, distribution, and reproduction in any medium, provided that original work is properly cited.

Contact author: Diana S. S. Santos e-maill: diana.santos@inov.pt

Efficient Creation of 3D Models from

Buildings’ Floor Plans

Diana S. S. Santos
1
, Márcio Dionísio

1
, Nuno Rodrigues

2
 and António Pereira

2

1
 INOV-INESC Inovação Leiria, Leiria, Portugal

2
 Research Center for Informatics and Communications of Polytechnic Institute of Leiria, Leiria, Portugal

__

Abstract

Nowadays, there is a huge need for efficient tools to produce virtual models, mostly urban, in

several areas such as architecture, movies, games, virtual worlds and commercial applications.

These models may be either generated “fictional” models or reconstructed models representing

real world structures. This last option is the motivation behind this paper and past experience has

shown us that, usually, it is harder to recreate existing models than trying to create new ones.

The purpose of the research here addressed is the de2inition of a method to ef2iciently produce 3D

models of existing buildings. The method allows the 3D creation of buildings’ structures (interior

and exterior) and corresponding surrounding environments from existing information such as floor

plans (in any format), photographs, etc. It also allows the application of different materials

(textures and colours) to the buildings’ structure and to place and distribute objects logically. The

method is established through the development of a software prototype – AV3D (Ambientes

Virtuais 3D – 3D Virtual Environments) – that allows the production of the realistic results shown

in this paper.

Keywords: 3D building creation, modelling of buildings, virtual environments, furniture

distribution.

__

Introduction

The automatic modelling of buildings has

been one of the great challenges of virtual

reality, having proved its applicability in

several areas. The modelling process

involved in creating a 3D model of an existing

building, while manual, requires significant

time and effort. However, the full automation

of this process, with the objective of

minimum or non-existent user intervention,

is almost impossible and is still a problematic

issue, since it fails in achieving optimal

results. It is precisely in this aspect that the

method we have developed intervenes,

aiming to automate as much as possible the

processes involved in the creation of 3D

building models from 2D 2loor plans and to

produce those optimal results.

In this article we aspire to present a method

for the expeditious reconstruction of 3D

building models, from the exterior and

interior structure to interior and exterior

distribution of objects as well as surrounding

environments. This method requires several

sources of information, such as buildings’

floor plans and photographs, in order to

create complete interactive 3D models that

represent the house and its surroundings. It

is also not limited to a digital format, with the

possibility of being applied to any existing 2D

International Journal of Interactive Worlds 2

plans. Several known algorithms were used

and others were developed to fulfill the

objective of automating as many processes as

possible (e.g. extraction of textures and

colours from photographs). More than a

compilation of techniques, it is a new method

with new techniques.

Developed for users without knowledge of

architecture and graphical modelling tools,

our prototype has a simple and intuitive

interface and requires a low level of

interaction with the user because of the

many automatic features (e.g. logical

distribution of furniture). The resulting

outcome, i.e. the 3D models of buildings,

offers a high level of detail and allows the

user to navigate interactively or experience

guided tours automatically created. This

interesting and versatile method is

applicable to areas such as architecture,

video games, cinema and simulation

programs, amongst others.

This paper is structured as follows. Section II

presents the related field work. Section III

provides a general description of the

proposed method for the efficient creation of

3D house models. The techniques and

algorithms used to automate some processes

are identified and explained in sections IV, V

and VI. In section VII we present our own

software prototype named AV3D (Ambientes

Virtuais 3D – 3D Virtual Environments) as

well as some tests and results. Finally,

section VIII concludes the article and

presents proposals for future work.

Related Work

Contrary to what could be presumed, the

creation of 3D building models from existing

information (reconstruction) (e.g. Willmott,

2001; Dikaiakou et al., 2003; Gonçalves and

Mendes, 2003; Müller et al., 2004; Silva et al.,

2004; Sundstedt et al., 2004) can indeed

prove to be a harder task than the generation

of buildings (e.g. Parish and Müller, 2001;

Greuter et al., 2003; Laycock and Day, 2003;

Wonka et al., 2003; Finkenzeller et al., 2005;

Martin, 2005; Müller et al., 2006a;

Finkenzeller, 2008; Rodrigues et al., 2008)

for which there is no existing information.

The 3D representation of a building that

exists or has existed in the past involves, in

most cases, the use of manual methods, thus,

opposing automatic methods for the

generation of buildings that commonly use

techniques related to Procedural Modelling

(PM). However, even though PM is more

often associated to the generation of new

structures, it can also be used to create

virtual models of structures that exist or have

existed in the past (e.g. Müller et al., 2005;

Müller et al., 2006a; Rodrigues et al., 2007;

Rodrigues et al., 2008). Ideally, the best

solution would be to combine the best of

both worlds, i.e. the detail level and realism

typical of the manual modelling methods and

the small amount of time necessary to create

a model that characterizes automatic

methods.

Urban procedural modelling has been the

target of numerous existing literatures. The L

systems, proposed by biologist and botanist

Aristid Lindenmayer, are parallel rewriting

systems based on grammars consisting of

sets of rules. Through these systems,

complex objects can be defined by replacing

parts of a simple initial object using a pre-

determined set of rules. Parish and Müller

(2001) generate a virtual city using L

systems in the generation of roads from

maps and in the division of land into lots.

They also apply L systems in the generation

of the final geometry of buildings.

Wonka et al. (2003) generated buildings by

creating facades using split grammars

(subtype of the shape grammars). Split

grammars are characterized by rules of

division that replace a geometric shape with

several others and rules of conversion that

transform one shape into another. These

authors introduced the concept of control

grammar, which serves the purpose of

making the distribution of the various

elements that constitute the facade of a

building in order to meet architectural rules.

They also exposed an attribute matching

system used to specify high-level decisions to

control the way the facades are generated.

Although the generated buildings are more

realistic, users must learn a complex

grammar and also database rules to specify

3 International Journal of Interactive Worlds

the attributes. Few years later, Müller,

Wonka and others (2006b) used the

knowledge from the pprevious mentioned

work to propose a new method for

addressing the problem based on a mass

model technique.

In the method presented in Greuter et. al.

(2003), a top down approach is used for the

generation of the outer facades of a building,

starting from the roof and proceeding to

every floor plan until reaching the desired

height. Each floor plan is constructed through

the extrusion of random generated polygons

submitted to scaling, rotation and merging

operations. Each generated floor plan serves

as the source base polygon to the next one.

Lastly, the floor plans are combined with

union operations.

In the work of Finkenzeller et. al. (2005) it is

presented a technique for the generation of

2loor plans and resulting 3D geometry based

on the decomposition of the architectural

features of the facades. The floor plans,

represented by an edge-based format, are

created by composing convex 2D polygons. In

this method, a subdivision process is

performed to build more detailed elements

such as corners, walls, doors and frames.

One common feature amongst the presented

research is that these techniques are mainly

designed for the generation of facades, thus,

leaving aside the internal structure of

buildings. Hahn et al. (2006) address this

matter in real time by dividing rectangular

floors corresponding to the interior of

buildings into rectangular rooms and

hallways. However, the representation of real

buildings falls out of scope from this work

because the rooms are formed randomly and

there are no architectural patterns taken into

account.

The interior and exterior building generation

is also the focus of Martins’ approach (2005).

Still, the presented results lack some realism,

though it is interesting to notice that some

architectural issues are taken into account.

Indeed, the author (and also some of the

previously mentioned literature)

acknowledges the architectural patterns

described in 1977 by Christopher

Alexander’s in “A Pattern Language”

(Alexander et al., 1977), which may serve as

a basis to several architectural applications.

Rodrigues et al. present several methods

based on architectural rules and laws to

create virtual 3D models of houses covering

the generation of modern houses (including

their interiors) and the reconstruction and

generation of cultural heritage structures,

with applications in diverse areas such as

architecture (Rodrigues et al., 2008a;

Rodrigues et al., 2008b), Archaeology

(Rodrigues et al., 2007; Rodrigues et al.,

2008c) and virtual worlds (Rodrigues et al.,

2009).

Another issue addressed in this article

concerns the automatic distribution of

furniture in a building’s rooms. This problem

has been the focus of different approaches. In

declarative modelling (Roux et al., 2004;

Gaildrat, 2007; Tutenel et al., 2008), the user

specifies constraints to describe the

relationships between objects and is helped

by semantic knowledge to generate a layout.

Nevertheless, this type of systems requires

user interaction and manual descriptions of

the scene to layout.

In the work of Smith et al. (2001), connection

areas between the objects are defined.

Similarly, CAPS system (Xu et al., 2002)

defines rules for each object that specify

which type of objects their surface supports.

However, the system takes several minutes

to create reasonably complex interiors and

does not support the featuring of objects on

ceilings or walls.

Other techniques are used in the automatic

placement of furniture. For example, natural

language sentences are used to describe a

scene in the WordsEye system (Coyne and

Sproat, 2001). Calderon, et al. (2003) and

Seversky and Yin (2006) also present

approaches based on natural language to

describe the object rules and relationships

between objects. Still, because of the known

ambiguities in natural language, these

systems are not appropriate as a generic tool

for object distribution in a scene, along with

International Journal of Interactive Worlds 4

the fact that they only treat single individual

scenes.

There are some systems resulting from

research works related to the

automatic/semi-automatic modelling of

buildings from 2D architectural plans. Some
works (So et al., 1998; Kashlev, 2008; Yee,
2008) are based exclusively on DXF formats
and are designed for experienced users.
These solutions have several limitations:
they are based solely on plans of the DXF
format; they cannot generate the exterior
structure of a house; they do not detect
windows; they do not support stairs to
connect floors; they do not allow the
application of colours or textures on walls,
ceilings or floors; they do not support the
distribution of interior objects in the rooms.
Some other systems are based on building
plans drafts (Do, 2001; Oh et al, 2004; Oh et
al, 2006), yet, these have scale imprecisions
and do not allow the representation of the
interior of buildings.

In what concerns commercial solutions, there
are many specific tools that work with both
2D and 3D models, either generic (e.g. Google
Sketchup Pro, 2010, and 3D Home Architect,
2010) or speci2ic, such as architecture
related tools (e.g. AutoCAD Architecture,
2010, and VectorWorks, 2010). Despite the
widespread usage of these tools, they are
more targeted at architects and designers.

Likewise, there are also languages for the
representation of geospatial information like
the Geography Markup Language (GML)
(Open Geospatial Consortium Inc., 2010);
languages that enable the description of 3D
shapes such as the Generative Modelling
Language (Computer Graphics & Knowledge
Visualization, 2010); and even more speci2ic
languages like the CityGML (Open Geospatial
Consortium Inc., 2010), a GML language

specialization for the visualization of
architectural 3D models that requires its own
specific browser.

Despite all these solutions, they hardly
represent the most adequate means to
achieve the desired objective of maximum
process automation. Therefore, it should be
intended to represent all geometrical and
semantical information. This representation
should be composed in a hierarchical
correlated fashion that obeys to several
spatial premises and that gathers all other
essential requirements for the correct 3D
representation of a building’s features and its
surroundings. These factors stimulate the
development of new methods and specialized
tools such as the ones presented in this
article.

Method Description

The purpose of the method addressed in this
paper is the expedite creation of realistic 3D
buildings and surrounding environments
from a set of selected information: floor
plans, photographs, room areas and
organization, solar orientation, location,
surroundings, amongst others. As a
consequence of the automation of some
processes the user has a reduced interaction
level.

This method is very flexible and produces
realistic results, needing only minimal
information to create the 3D buildings. This
means that it is capable of constructing a
complete virtual model (exterior, interior
and surroundings) while leaving a margin for
perfecting the model based on the quality
and quantity of the base information. Fig 1
summarizes schematically the steps required
by the method to accomplish an existing
building’s 3D model from a set of input data.

5 International Journal of Interactive Worlds

Fig 1. Method for the Creation of 3D Buildings

The method is decomposed in three main

stages:

1. Floor Plan Vectorization: using

previously digitised plans, the scale is

automatically detected so that user mistakes

are avoided and the manual intervention is

reduced to a minimum. Then, the user must

contour every room on the floor plans with

the objective of converting raster format into

vectorial format. This process is assisted by a

snap to raster function (snaps into image’s

pixels) that augments speed and precision.

An automatic process is also executed for the

detection of doors and windows, taking into

account the contours made by the user and

also the original floor plans.

2. Floor Plan Modeling: in the vectorial

floor plans the user can now indicate the

connections between each floor by placing

staircases; define the types of floor, walls and

ceiling, whose real colours and textures can

be extracted from photos of the real rooms;

place windows and doors that the automatic

process did not detect; place interior and

exterior objects manually or automatically;

create the roofs; create the surrounding

environment.

3. 3D Creation: finally, modelled plans and

all 2D represented objects are converted into

a 3D format and the guided tour paths are

automatically generated. The models’ final

representation is achieved through the usage

of VRML/X3D technology.

The following sections present and describe

all the techniques and algorithms used in the

different processes of each of the stages of

the 3D building creation method.

Floor Plan Vectorization

The developed method for the 3D building

creation is based on its original floor plans.

Taking as reference the Portuguese example,

it is observed that few owners possess floor

plans in digital format and many don’t even

have the paper floor plans. The legal

obligation of supplying digital format plans

to competent authorities has only been

recently imposed. If the owner does not

possess the digital format plans, they will

have to be obtained through requests to

public entities. Currently, these entities only

supply building plans in paper format. Due to

these reasons and because many buildings

pre-date the aforementioned legal

imposition, the need to optimize the

conversion of paper floor plans into digital

format has become an issue.

The first stage of the method consists of the

conversion of digitised floor plans into the

vectorial format aided by snap to raster

processes and automatic detection of doors

International Journal of Interactive Worlds 6

and windows. This stage also allows the

automatic scale detection.

Automatic Scale Detection

The first step of this stage consists of the

automatic scale detection of the floor plans to

avoid mistakes that can occur in the manual

calculation process and to avoid

overburdening the user with lengthy and

monotonous tasks.

Typically, floor plans have room measures

defined as length and width (i.e. metres) or

as total area (i.e. square metres). So, to

determine the scale, the user has to carry out

some calculations. To save the time of this

manual process, we have developed an

algorithm – FPSE (Floor Plan Scale Extractor)

which uses OCR (Optical Character

Recognition) technology to extract the

impressed text from a digitised image file

(raster format). All future calculations are

then based on the extracted scale. The FPSE

steps are described in the following flow

chart:

Fig 2. Automatic Scale Detection Flow Chart

7 International Journal of Interactive Worlds

With the exception of flaws that occasionally

may occur (for example, due to interferences

like low quality printing in the floor plans)

the method produces good results (see

section VI).

Edge Detection – Snap to Raster

The initial solution to convert raster floor

plans to vectorial floor plans was to use a

raster-conversion tool. For this reason, we

have tested several applications, such as

Vector Magic (2010) and Magic Tracer

(2010). Nevertheless, after several tests, we

found these tools inadequate to our problem

since the vast majority of existing buildings’

floor plans is still on paper format, a support

prone to conditions such as low quality

printing, imprecision, dirt and deterioration.

In addition, many may contain small or

overlapping details and confusing patterns,

which prevent these tools from deciphering

information in a correct way. To employ

these tools, the user would have to waste a

lot of time “cleaning” the original image

(digitised from the paper floor plans) or

correcting the final result to obtain the

definitions of the rooms, windows, doors and

other elements from the mass of vectors

generated by the tools. This complex and

time consuming task would compromise the

automation level we are trying to achieve in

the 3D building creation process.

Based on the performed tests, we concluded

that the most effective solution would be the

creation of a snap to raster function. The

snap to raster is similar to the snap to grid

function featured in drawing tools such as

Microsoft Office Visio, but instead of

performing the snap into small squares, it

does so into an image’s pixels.

The objective of the snap to raster function is

to make the mouse cursor, when

approaching a corner formed by the floor

plans’ walls, trigger the application into

automatically snapping to that corner. In

other words, the cursor is automatically

positioned into the corner so that the user

can draw the walls in a faster and more

precise manner. By recognizing line

midpoints, corners, intersections and line

ends, this functionality enables the user to

draw over a floor plans’ image.

To implement the snap to raster function we

use two algorithms: one for corner detection

and the other for edge detection. For the first

one, we choose to use the SUSAN (Smallest

Univalue Segment Assimilating Nucleus)

algorithm (Smith and Brady, 1997). For the

second one, we have created a new algorithm

specifically for that purpose.

The SUSAN algorithm neither makes

suppositions about the local image’s

structure around a certain point nor searches

for interest points (i.e. points that have a

clear definition, a well-defined position in

image space and are rich in terms of local

information contents). Instead, it separately

analyses several areas by using local direct

measures and finds places where the

individual region limits have a high

curvature, i.e. it finds corners formed by

individual areas. Thus, in bifurcations

involving more than two areas (e.g. in a “T”

form) where more than one single area might

contribute for the detection of a corner, all

the intersections will be correctly processed,

no matter the complexity degree of the

situation (Smith and Brady, 1997). Fig 3

shows that in an area where a corner lies a

quarter of its pixels inside the circular mask

called USAN (Univalue Segment Assimilating

Nucleus) the pixels have identical gray scale

values. For this reason, finding a corner is

almost equivalent to finding a USAN which

has a quarter of pixels with identical gray

scale values.

International Journal of Interactive Worlds 8

Fig 3. Three Circular Masks at Different Places on an Image Trying to Detect Edges

 (Adapted from Smith and Brady, 1997)

In the edge detection algorithm, an angular

search is performed for each angle (with its

centre at the mouse location), thus,

measuring the number of adjacent pixels

traversed. Then, the closest set with a

number of pixels above a certain threshold is

chosen. After attaining the pixel set, its centre

point is calculated and used as the centre of

the cursor’s closest wall. In the next figure,

the red dot represents the mouse location,

the red line represents the closest set of

adjacent pixels and the blue line

demonstrates how the set forms a line that

points to the cursor.

Fig 4. Edge Detection Process

Detection of Doors and Windows

To increase the level of automation in our

method, we have added a feature to

automatically detect doors and windows. The

algorithm created for this purpose uses a

recognition technique for geometric shapes

and is done in real time, as the contours of

the floor plan are designed by the user. The

algorithm searches for doors and windows

above the contours of the image’s floor plan

and it is divided in three steps described

next.

Extraction of the Search Area of the

Image’s Floor Plan

In this step, the algorithm starts by cropping

the parts of the image that lie under each

wall designed by the user. The new images

have a length equal to the wall and a width

equal to the thickness of the designed wall

plus an increment of 50% tolerance. Fig 5

shows the four new images extracted from a

room. If the wall drawn by the user is curved,

then the part of the image extracted by the

algorithm is transformed into a straight

shape so that the algorithm becomes more

efficient and simpler.

9 International Journal of Interactive Worlds

Fig 5. Extracted Images from the Room Walls

Detection of Potential Side Edges

The purpose of this step is to identify

potential side edges of windows and doors

from the extracted images in the previous

step. This process consists in the detection of

vertical lines with a length greater than a

certain value (i.e. thickness of the wall). Since

the image scale is known from the scale

detection step, and the edges of the

windows/doors are the joints between them

and walls, the algorithm can make a first

search for the vertical lines. All the vertical

lines shorter than the thickness of the wall

can be discarded because the edge of a

window/door has a length equal to the wall.

So, for each image, a search for a vertical line

is performed for each X coordinate.

After having detected the vertical lines, a

second filter has to be applied to determine

those which may be potential

window’s/door’s borders. A line is an edge of

a window/door if it has on one side a wall

and on the other a window/door, or if it has a

window/door on both sides. Therefore, for

each detected vertical line, the algorithm

calculates for each side the percentage of the

line that is in contact the x-1 and x+1 lines

(see Fig 6). If at least one of the two sides has

a contact percentage lower than 75%, then

the vertical line is considered to be a

potential edge of a window.

Fig 6. Detection of Side Edges

Determination of a Window/Door

In this step, each pair of edges is analyzed to

determine if the pair represents a

window/door. For each one, horizontal lines

between the edges are detected. Then, based

on the information about the edges and

horizontal lines, a score is calculated to

determine whether or not the pair defines a

window/door.

The process is done through the calculation

of the percentage of pixels that fills the line

for each Y coordinate. If the value is greater

than 90%, then it is considered that in the

current Y coordinate there is a horizontal

line. In addition, the average colour of the

line is also calculated. When there are

adjacent horizontal lines with similar

colours, then it is considered that these lines

define a single thick line.

With the potential edges of a window/door

and with the horizontal lines, the result of the

score can be found. Through the observation

of Portuguese floor plans, we have come to

the conclusion that the windows are usually

represented in four different ways (Fig 7)

and the doors in nine ways (Fig 8)

International Journal of Interactive Worlds 10

Fig 7. Window Types Represented in Floor Plans

Fig 8. Door Types Represented in Floor Plans

For each type of window, a score is calculated

and if there is at least one type with a score

greater than 90%, then the edges de2ine a

window. The scores are calculated based on

the following items:

1. Degree of similarity between the left and

right edge, in terms of both length and

positioning;

2. Proximity of the horizontal lines in relation

to the position where they should be;

3. Image area not covered by horizontal lines.

The same goes for the calculation of the score

for the doors. From the previous

characteristics, the first and the third ones

are also applied to the doors. In addition, the

next items are also taken into consideration:

1. Proximity of the horizontal lines in relation

to the position where they should be and the

length they should have;

2. Proximity of the vertical lines in relation to

the position where they should be;

3. Proximity of the length of the vertical lines

in relation to the distance between the left

and right edges – the length of a door must

equal (considering a threshold value) the

distance between the edges because when

the door closes, it is obvious that it must

range the whole passage.

Floor Plan Modeling

The floor plan modelling stage comprises the

application of the extraction processes of

textures and colours, connections between

floors, objects placement and distribution,

roof generation and creation of surrounding

environment in vectorial floor plans.

Texture Extraction

Besides the creation of the inner and outer

building structure, the developed method

also allows the extraction of textures from

real photographs in order to enhance the

realism of the final building models.

To make the texture application process

easy, fast and realistic, it was necessary to

develop a texture extraction process. To

achieve this goal, we had to resort to a

common method in image processing, that is,

the detection of contours in an image.

Contours in images are strong contrast

intensity areas (from one pixel to the other).

Contour detection procedure significantly

11 International Journal of Interactive Worlds

reduces data quantity and filters useless

information, thus, preserving the image’s

structural properties.

The developed texture detecting technique is

executed when the user needs to add new

textures to apply to a wall, floor, ceiling,

window, amongst others. This way, the user

sees his/her work facilitated by simply

passing the mouse cursor over an image to

automatically discover several highlighted

rectangular areas (most of the times, tiles

and mosaics) in the cursor’s position.

The technique applied in the automatic

texture extraction uses existing algorithms.

Through a specific order of the algorithms

and by passing the output of one algorithm as

the input of another, meaningful results are

attained. This technique employs the Sobel

operator (Sobel and Feldman, 1968) to

detect image contours and some Emgu CV

functions (a cross platform, net wrapper to

the Intel OpenCV image processing library)

(Emgu CV, 2010). The technique is described

as follows:

Fig 9. Automatic Texture Extraction Process

The Sobel operator calculates the image

intensity gradient in each point, giving the

direction of the maximal possible increase

from light to dark and the change rate in that

direction. The result shows the abrupt or

smooth changes verified in the image at that

specific point, permitting to conclude

whether that part of the image represents a

contour and which is its orientation (Green,

2002; Matthews, 2002).

Sobel presents quite effective results in cases

where the passage from one colour to

another is quite strong (for example, from a

blue tile to a white joint). However, when the

passage is subtle (in the case of a white or

light grey tile to a white joint) Sobel

experiences some problems in contour

recognition. Nevertheless, it presents a good

tolerance to interferences, it possesses a low

error rate, it is effective and it is

computationally more efficient than other

analyzed algorithms (for example, Prewitt,

LaPlace, Canny, amongst others).

International Journal of Interactive Worlds 12

The correct preparation of an image through

the use of the Sobel operator and some Emgu

CV functions allowed the texture extraction

technique to present very good results (see

results in Fig 22).

Colour Extraction

The same way the texture extraction is

important in the 3D building creation

method, so is the colour extraction from a

photograph. Together they represent two

techniques significant in process automation,

thus preventing the need of user

intervention.

Taking as example a common photograph of

a wall, we can observe that a wall might have

undesired objects such as doors, windows,

furniture, paintings, and others. Also, a wall

rarely presents the same colour throughout

its extension due to factors such as shadow

and reflexes created by lighting, dirt, or even

painting flaws. This way, we have developed

a new colour extraction algorithm that takes

into account the referred incidents.

Nevertheless, it does not consider the fact

that the photograph colours may be altered

due to interior shadows or brightness from a

nearby window.

The algorithm, named DBCE (Density Based

Colour Extractor), searches the “centre” of

the most common colour sets present in the

image. Basically, the image is converted into

a three-dimensional cube whose actual

dimensions represent one of the RGB colour

(Red, Green and Blue) components. Each

cube dimension has got a 256 length that is

representative of the 256 different values a

colour component might have. Each small

square contains a numeric value that

indicates the pixel quantity of a certain

colour present in the image.

For instance, if there are 120 pixels with the

RGB colour 255, 0, 0 (red) in an image, the

small square in the 255, 0, 0 coordinates will

have a value of 120. With the 3D cube, one

must only find its denser inner location and,

based in a diameter 6 sphere, obtain the

image’s most common colour. When

searching for the denser location, it is taken

into account that the larger the square value

is, larger will also be its weight. Since the

sphere contains the denser location, its

centre will present the final colour that is the

one that exists in larger quantities in the

image. To illustrate the technique, we

provide the following pseudo-code

description:

Color
DensityBasedColourExtractor
(Color[][] image, Integer

imageWidth, Integer imageHeight)
{
 cubeRGB = new
Integer[256][256][256]
 for(x=0; x<imageWidth; x++)
 for(y=0; y<imageHeight;
y++)
 {
 color = image[x][y]
 cubeRGB[color.Red][colo
r.Green][color.Blue]++
 }
 radius = 3
 best = 0
 bestColor = null
 for(r=radius; r<256-radius;
r++)
 for(g=radius; g<256-
radius; g++)
 for(b=radius; b<256-
radius; b++)
 {
 sum = 0
 for(r1=r-radius;
r1<r+radius; r1++)
 for(g1=g-radius;
g1<g+radius; g1++)
 for(b1=b-
radius; b1<b+radius; b1++)
 sum = sum +
cubeRGB[r1][g1][b1]
 if(sum>best)
 {
 best = sum
 bestColor = new
Color(r,g,b)
 }

 } return bestColor

13 International Journal of Interactive Worlds

}

Connections between Floors

A house or even an apartment might have

several floors usually connected by stairwells

which are also supported by the present

method. This way, when it becomes necessary

to create a connection between two floors

through stairwells to allow the user to freely

navigate among floors, the method takes into

consideration ceiling and floor gaps in

staircases’ start and end floors. The placement

of staircases is done as follows:

If first step does not overlap a
wall

Valid step
Select staircase type
If building possesses more than
two floors

Select destination floor
Else

Remaining floor is
automatically selected

Define position of the last step
through the alteration of
staircase length and/or width
If no overlapping situations in
start and end floors between
walls and staircase positions

Ladder successfully created

Once the staircase is placed, the user should

insert the stairwell’s ceiling and floor

dimensions so that navigation between floors

is possible. The ceiling gap should always have

one of its sides touching the last step of the

staircases, otherwise, it will be considered

invalid by the method as it can be seen in the

first image of Fig 10. This is a manually

conducted process because the ceiling gap

dimensions are always different from case to

case and do not follow a standard that could be

incorporated in the method. From the moment

the gap is correctly placed, the user can be

assured that after the 3D model is created

he/she will be able to navigate among floors.

Fig 10. Structure Opening between the Staircase’s Two Floors: Invalid (Left) and Valid (right).

The Rectangle with the Thicker Line Represents the Ceiling Gap

Objects Placement

Besides reproducing the interior structure of

the buildings, in our method it is also possible

to augment the 3D models realism by placing

several interior objects (like furniture,

fireplaces and decoration objects) and exterior

objects (such as trees, flowers, garden tables

and chairs).

Interior objects have been classified according

to three positioning places: floor, ceiling, and

wall. In the first place are included most of the

house objects: tables, sofas, beds, bathtubs and

so on. Ceiling type objects include lamps, fans,

amongst others. At last, wall objects include

paintings, wall lamps, kitchen cupboards, and

others.

Object positioning is done in 2D through the

use of the information contained in a 3D object

database. When rendering objects, every single

one is considered according to its containing

box or bounding box. This way, any object is

placed as close as possible to the ceiling, wall

and/or floor. A wall object, like for example a

kitchen cupboard, will have marked in its entry

in the database which sides of the cube can be

placed against the walls and its distance from

the floor, so that it can be correctly placed in

the 2inal 3D model.

To make sure the task of object positioning is

quick, the method enables to snap the object

towards the nearest wall in the moment of its

placement inside the room. In the example of

the kitchen cupboard, its front can never be

placed against a wall because its definition in

the database already defines that only the back

is permitted to do so. When an object features

more than one of such sides, it is the closest to

the wall that will be privileged or,

International Journal of Interactive Worlds 14

alternatively, the side that requires the object’s

minimal rotation (Fig 11).

Fig 11. Object Automatic Snap towards the Nearest Wall

The method also allows the positioning of an

object over another, meaning that it is

possible to place a television on the top of a

TV table. This type of object positioning had

to be developed in a different way, since in

some cases the objects’ bounding boxes could

not be used. This is due to the fact that

objects seldom result in perfect cubes. If the

positioning was guided through the objects

bounding boxes the outcome would be

unrealistic (see left image of Fig 12).

To solve this problem, objects are

decomposed into smaller parts. For example,

in the right image of Fig 12, if it is intended to

place a jar-object on top of the table with

chairs, the jar’s bounding box is placed as

near as possible to the table’s top (the object

that is placed immediately below). Thus,

since there are no overlapping bounding

boxes or spacing, the result is correct for the

human eye.

Fig 12. Wrong Jar-Object Positioning (Left) and Right Positioning (Right)

Objects Distribution

In our method, it is also possible to distribute

objects automatically through the rooms of

the building. Following a room by room

approach because of the function specificity

in each room, the created algorithm performs

the furniture distribution according to

placement constraints and a set of semantic

rules attained from the observation of real

floor plans and from common sense. The

method allows the objects to be placed

arbitrarily but achieving stable

configurations (according to their placement

constraints and semantic rules) which results

in layouts of visual richness and realism.

A set of constraints is associated with each

type of object to define where the object may

or may not be placed. The proximity

constraints type determines the minimum

space that is necessary to exist between the

objects. Another type of constraints defines if

the top surface of an object can support other

objects, or the opposite: if an object can be

placed in the top surface of others.

To create realistic and coherent layouts, the

distribution of objects is ruled by semantic

rules including definitions for the function

and fragility of objects, and for the

interactions and relationships between them.

The algorithm uses the already referred

database of 3D objects which contains all the

information necessary to the placement

calculations.

15 International Journal of Interactive Worlds

When planning a logic layout, this automatic

functionality also considers only the 2D

bounding boxes to plan where an object is to

be placed. This is due to the very complex

shapes that 3D objects can have.

The method is decomposed into three steps:

choosing the objects to be placed in the

house, determine the objects positions

according to constraints and lights

placement.

Objects Selection

The objects that will be placed in a room

depend on the room type and its specific set

of objects. For instance, a toilet, a bathroom

sink and a bathtub only appear in a

bathroom. However, it does not mean that a

given room will receive all the objects that it

is supposed to. There may be situations

where not all the objects can be placed due to

insufficient space, door passage blocking,

collisions between objects and opening

doors, or even objects overlapping with

windows.

So, the first thing that the algorithm does is

to determine what object types will be placed

in a given room according to its function.

Randomly, the algorithm will choose the

object types and quantities from each one

according to a set of rules.

Then, the algorithm randomly chooses for

each object type the specific object from the

database to place. For performance issues, if

a particular object was chosen in a room, and

if the object type is repeated in another

room, the same object will be chosen for this

last room. This minimises the number of

different objects being used in the house,

therefore, reducing the size of the final

model.

Objects’ Positions

For wall objects, i.e. objects intended to be

placed on walls, the selection of walls where

they can be placed against is done according

to their length and their distance from the

door of the room. So, the walls may or may

not be ordered according to their distances

from the door of the room.

For some rooms, priority is given to the walls

where certain objects can be placed side by

side (e.g. in a bathroom the priority is given

to the wall that can support a bidet and a

toilet). In this situation, the lengths of the

objects’ bounding boxes are added along

with the value of the minimum spacing

between them, which is obtained according

to their proximity rules. Until the algorithm

finds a wall to place the objects’ sequence,

the objects will keep being removed and

placed on separate walls.

If an object is to be placed close to the door,

then the walls where it can be placed are

ordered upwardly by the distance between

the centre points of the wall and door

passage. On the other hand, if an object is to

be placed far from the door, then the walls

are ordered in descending order of distance

to the doors. For an object that can be placed

randomly (e.g. plants or paintings) its walls

are arbitrarily ordered.

Another aspect to account for is the

relationships between objects, so that the

objects with no dependencies are placed first.

For example, in a bathroom the sink is

usually placed closest to the door, right after

that the bidet is placed and finally the toilet.

In this situation the toilet depends on the

bidet and the bidet depends on the sink.

Since the sink has no dependencies, it is the

object to be placed first.

Most of the objects are placed against a wall

with specific layout rules (e.g. object placed

on the side of a wall closest/farthest to/from

the door). For random placement objects an

arbitrary position in the wall is chosen. If an

object is to be placed side by side with a

previously placed object, it is placed

immediately after the positioned object with

the appropriate spacing obtained from the

proximity rule set.

Once an object is placed, its position is

adjusted so it does not overlap any

previously placed objects, walls or opening

International Journal of Interactive Worlds 16

doors. This procedure is done by using

simple geometric operations such as line

intersection detection and “point in polygon”

checking. Still, there may be situations where

overlaps still occur. If it is the case of side by

side sequences, an object is removed and

placed on a separate wall. If not, either an

object is switched to a smaller object type

(e.g. bathtub replaced by a shower) or if it is

a non-critical object, it is simply removed

(e.g. a bidet). In both cases, the placement

algorithm starts over.

There are other situations where objects may

not be placed against walls, such as dining

tables or a sofa in front of a TV with no wall

behind it. In this last case, to perform this

type of placement, real and false walls are

used by the algorithm and a set of semantic

rules are used. In the sofa and TV example, to

determine whether or not false walls are

needed, it must first be determined if there is

enough space on the existing walls where the

objects may fit and at the same time if those

walls are not too far from the TV. If there is

not enough space using existing walls, then

false walls must be calculated. False walls

de2ine a 2D bounding box that does not

overlap any existing walls, so the objects

cannot be placed against its edges neither too

far nor too near from the TV.

When calculating the bounding box, real

walls that are at the right distance to the TV

and have an angle close enough to the angle

of the wall where the TV is, can be used for

determining the far edge of the box. If a wall

is at the right distance to the TV and has an

angle close enough to the perpendicular of

the wall where the TV is, then it can be used

for determining a lateral edge of the

bounding box, as it can be seen in Fig 13

.

Fig 13. Created Bounding Box of False Walls (thicker rectangle) for the Positioning of Objects

around the TV

If there are no existing walls that can be used

to determine either the far edge or the lateral

edge of the bounding box, then a random

edge is calculated within the minimum and

maximum distance to the TV.

Once the bounding box is calculated, the

living room objects can be placed as if its

edges were real existing walls.

Placement of Light Sources

The algorithm’s last step consists of the

placement of lights throughout the rooms of

the house. Lights can be placed in four

different ways: against the walls, on the floor,

over the furniture or against the ceiling. In

the case of floor and over the furniture lights,

the placement is treated as with all the other

objects in the previous step.

In wall lights placement, the algorithm starts

by obtaining all the walls that can receive

lights (even parts of walls between windows,

doors or already placed objects). Once the

walls are obtained, the number of lights

needed is calculated dividing the total length

of original walls in the room by the maximum

length of wall that a light can illuminate.

17 International Journal of Interactive Worlds

The next step is to evenly distribute the

number of lights through the obtained walls.

In Fig 14, an example can be seen of a room

with a total original wall length of 39 metres,

a usable wall length of 34 metres and where

each light can illuminate a 4 meter radius.

The lights are represented by red dots, the

blue lines represent walls that can receive

lights, the dark rectangles represent

windows and the opening on the left wall

represents a door. In this example, starting

from the door on the left wall, the algorithm

attempts to place lights at equal distance

from each other (i.e. 4 metres) and when a

light happens to lie on a portion of wall that

can’t receive a light, the algorithm jumps to

the beginning of the next valid wall and

places the light there. Once the desired

number of lights has been placed or the

entire perimeter of the room has been

traversed, the algorithm ends.

Fig 14. Placement of Wall Lights in a Room

If a light is to be placed on a ceiling, the

placement becomes a little more complex.

First, the algorithm has to find all the

different angles defined by the room’s walls

(see Fig 15).

Next, it rotates the room by each determined

angle and for each one calculates horizontal

lines that represent paths where lights can be

potentially placed. These lines have to be

placed in a way that allows the room to be

completely illuminated and at the same time

with the least amount of lights. Therefore, the

lines will have to be placed as far apart as

possible with a spacing no greater than the

diameter of illumination of the lights to place.

To achieve the correct number of lines and

their positions, the following calculations are

made:

1. number_of_lines = Round up (rotated_room’s_height / diameter_of_illumination)

2. new_diameter_of_illumination = rotated_room’s_height / number_of_lines

3. Place the 2irst line at: y = new_diameter_of_illumination / 2

4. Place remaining lines at: distance of new_diameter_of_illumination from the

previous line.

International Journal of Interactive Worlds 18

For each calculated horizontal line, the

portions contained inside the room are

calculated using line intersection equations.

After that, for each line segment the length is

calculated, then divided by the diameter of

illumination and finally rounded up to

determine the necessary number of lights.

The lights can then be evenly distributed

along the line segment. For example, in Fig

5a) the room’s height is 20 m and the

diameter of illumination of each light is 12 m.

The following calculations can be done:

• number_of_lines = Round up (20 / 12) = 2

• new_diameter_of_illumination = 20 / 2 = 10

• Place the 2irst line at: y = 10 / 2 = 5

• Place remaining lines at: y = 5 + 10 = 15

For each light, a verification is also made to

determine if there are already any lights in

the vicinity with a distance less than or equal

to the radius of illumination. If such a light

exists, then the current light isn’t placed. This

process is done for each line segment and for

each different angle earlier determined,

because there may be situations where the

simple distribution of lights in the room may

produce regions without illumination due to

the shape of the room (see Fig 15 b).

Fig 15. Light Ceiling Positioning (a) Trapezium Shaped Room (b) Cross Shaped Room

Roof Generation

Roofs can be extremely complex building

features. For example, in a two floor house,

there might be roofs other than the main one

on the top floor, like some kind of roof

protecting the entrances of the house.

Moreover, the roof might just be flat or have

some different heights, and might have

curves or slopes.

In this method, roof generation uses the

Straight Skeleton algorithm presented by

Felkel and Obdrzálek (1998). The Straight

Skeleton algorithm enables the generation of

hip roof types in straight walls’ buildings.

However, some alterations were conducted

so that it would become possible to extend it

to the creation of roofs for buildings with

curved walls. This way, and because there is

a range of different real roofs, these

alterations contributed to increase the

buildings’ realism.

In a practical level, the modified algorithm,

besides calculating the straight skeleton for

straight polygons, can also carry through the

calculations for curved polygons. For a

certain corner, the straight skeleton

calculates the angles of the two straight lines.

The result is the medium value of the two. In

the case of a corner composed by a straight

line and a curved one, the angle of the latter

is determined by its vertex tangent. So, every

time the algorithm finds a curve in the roof’s

polygon, it calculates the straight line tangent

to the curved line in the vertex and uses it as

if it was the roof’s straight line. The following

results are achieved:

19 International Journal of Interactive Worlds

Fig 16. Modified Straight Skeleton Algorithm Calculations for Straight and Curved Lines

Surrounding Environment Creation

The creation of houses’ surrounding

environments consists in the definition of

terrain areas, placement of exterior objects

and setting the view that the observer will

see when looking out to the horizon of the

2inal 3D model.

The creation of the terrain is done by

de2ining 2D polygons that represent land

areas. For example, one polygon could

represent a grass area and another polygon

could represent a concrete driveway. In

addition, global slopes can be applied to the

areas.

Next, objects such as trees, flowers, picnic

tables and so on, can be set on the areas. An

exterior object can have one of two types of

placement: flat against the ground or placed

vertically. In the first type, if the land has an

inclination, the object will also be inclined so

that it continues flat against the ground. In

the second type, the object is placed

vertically, no matter what the land’s

inclination is, so that a tree, for example, does

not tip. For this type of placement, an

algorithm must be applied to determine the

objects’ correct altitude at the same time that

it ensures that it will not float above the

ground in the 2inal 3D model (see 2irst image

of Fig 17).To achieve these results, the

object’s bounding boxes are decomposed into

smaller parts, just like the positioning of

interior objects above others. In the second

image of Fig 17, the tree is divided in two

parts: treetop and trunk. Then, the geometry

of the lowest part of the object, i.e. the one

that comes in contact with the ground, will be

used to determine the object’s final altitude

ensuring that no part of the object will float

above the ground. In the third image of Fig

17, the trunk’s geometry is used to achieve

the correct positioning.

Fig 17. Tree Placement in a sloping Terrain

Finally, the creation of the horizon view that

will be visible in the 3D 2inal model consists

in setting a panoramic image that is wrapped

around the exterior of the building, as if one

placed a cylinder surrounding the building

with a 360º image placed in the inside of the

International Journal of Interactive Worlds 20

cylinder. There are two different methods to

apply the panorama in the model. In the first

one, a single image is wrapped around the

entire exterior of the building and, in the

second, four different images are used with

each one being visible to the observer

depending on the direction where he/she is

looking. In this second method, each image,

corresponding to the North, East, South and

West views, will be placed in a half cylinder.

Fig 18 indicates what image is shown

according to the observer’s orientation. For

example, if the orientation is between 45 and

135 degrees, the North image is shown.

Fig 18. Panorama Orientation Degrees

3D Creation

The last step of our method consists of the

building’s 3D creation. The 2inal 3D models

were represented using VRML/X3D

technology. The next sections describe the

process in detail starting from the generation

of 3D geometry up to the automatic creation

of tour paths.

3D Geometry Generation

3D geometry is achieved in three steps. First,

walls are raised from the floor plan. Then,

doors and windows are created and house

objects (e.g. furniture) are added. Also, the

exterior objects of the surrounding

environment are added in this step. Finally,

roofs are also created and added to the final

model along with the panorama view.

When creating the walls a 2D polygon is

generated with the defined length and height

for each of the edges of the exterior walls’

floor plans. For the interior walls, each room

of the house is browsed and for each one all

edges are accounted for in order to create the

polygons that compose the inner building’s

walls. After the walls are parsed, floor and

ceiling planes are also added, one for each

room. In addition, the terrain areas are also

added to the surrounding environment of the

house.

In the second step, the integration of doors

and windows starts with the subtraction of

rectangles from inner and outer walls in the

respective places represented in the floor

plans. After the holes are made, these are

filled with the geometry of corresponding

doors and windows. Both windows and

doors can be of three types: surrounding

frame, bottom frame or frameless. For the

surrounding frame, the 3D creation process

applies a frame to all edges; for the bottom

frame, a frame is applied only to the bottom

edge; as for the last type, no frame is applied.

The addition of objects to the model is done

using a database with 3D objects in

VRML/X3D format. This object database was

previously used in the object distribution

stage for the choice of the objects to

distribute in the floor plan.

The algorithm used in the third step, taking

into account the 2D layout plan, searches the

VRML/X3D 3D object database to 2ind each

necessary object. The algorithm uses 3D

bounding boxes and makes all the scale

modifications that may be needed for the

objects to fit in the appropriated place. After

21 International Journal of Interactive Worlds

that, all 3D objects are placed in the correct

locations. However, in the case of interior

objects that need to be placed in top of

others, these have to be decomposed in

smaller objects to determine the vertical

positioning.

Finally, in the last stage, the roof structure

and the panorama view are added. First, all

edges of the roof are created according to the

2D 2loor plan. Then, the remaining roof is

created by following a straight skeleton

approach. Lastly, to enhance the realism of

the roofs, 3D half-cylinders are placed on

each of the straight skeleton edges to

represent the roof spines. 360º images are

also placed around the building and added to

the final model.

After the execution of all previous stages, the

geometry is modelled into VRML or X3D.

Both technologies allow the visualization of

all elements of the building (exterior, interior

and surroundings components) through a 3D

perspective where the user can navigate

through the exterior and interior of it. To

increase the realism of the scene, the

generated models also include collision

detection, proximity sensors for turning on

lights and opening/closing doors.

Calculation of the Guided Tour Path

The 3D models created by our method offer

two types of interaction: manual or

automatic. In the first type, the visitor can

freely explore the building, both exteriorly

and interiorly, through the usage of keyboard

and mouse. In the automatic interaction, i.e.

guided tour, the users can visit the entire

building without having to learn how to

operate with VRML/X3D viewers. The

visitors watch a guiding film that takes them

through the exterior and into the interior

rooms. This last interaction kind is achieved

through paths automatically pre-calculated

when the 3D model creation was being

concluded.

To calculate the guided tour’s automatic path

through the 3D building we have created the

algorithm named FPPC (Floor Plan Path

Calculator). FPPC is based on the A*

algorithm (Hart et al, 1968), which is one of

the most popular and flexible algorithms

used in the path search problem resolution,

from a start point to an objective-point,

avoiding obstacles and minimizing

computation costs.

The A* algorithm is a combination of two

others: the Dijkstra algorithm (Dijkstra,

1959), used to 2ind the shortest path, and the

Best First Search (BFS) (Pearl, 1984), which

is guided by a heuristic. The success of the A*

algorithm lies in the combination of pieces of

information used by Dijkstra, such as the

privileging of vertexes closer to the

departure point, and others used by the BFS,

namely the privileging of vertexes closer to

the objective.

The FPPC algorithm applied in the guided

tour is based on the shortest and simplest

path calculations of A*, but with some

modifications. It uses a predetermined room

as a start point and another as an objective

point. Because in the A* the touring area

must be converted in squared space where

each small square is marked as areas that can

or cannot be crossed, the result is a set of

small squares that define the ones that have

to be crossed from the start point to the end

point. Considering that the house is a

continual space and not a discrete one, the A*

results are worked in optimizing fashion,

avoiding abrupt direction changes, typically

vertical, horizontal and diagonal paths and

others (see Fig 19).

International Journal of Interactive Worlds 22

Fig 19. Results and Optimisation of the A* Algorithm Path

As a result, the trajectory of the 3D building

that the user sees is the best-path calculated

with the objective of tour optimization.

Tests and Results

This section presents the results of some of

the used techniques, AV3D – the developed

software prototype to test the method – and

some images with 3D 2inal models produced

with AV3D. The results presented in this

section and in the last one were obtained on

a system equipped with an Intel Core 2 Duo

at 2.67GHz with 4 GB of RAM.

However, minimum requirements for AV3D

can be provided by a system equipped with

an Intel Pentium 4 at 1.3 GHz with 2 GB of

RAM.

Used Techniques

The automatic detection of the floor plan’s

scale is realized by the user through the

opening of the floor plan by simply clicking

on the Estimate Scale button. Rapidly, the

application shows the result of a 47 pixels

scale, as it can be seen in Fig 20.

Fig 20. Automatic Scale Detection Calculation Results

In the previous figure, the lounge room has a

5.0m width and a 235 pixels distance

between walls. Dividing 235 by 5 we obtain

the 47 pixels per metre scale. If the strings

were defined in square metres and not in

metres, and the lounge room had a 17 square

metres area, the calculations would be as

follows:

23 International Journal of Interactive Worlds

• ratio = 160 / 235 = 0,68

• width_in_metres = √ (17 / 0,68) = 5 m

• scale = 235 / 5 = 47 pixels per metre

SUSAN’s effectiveness in vertex detection,

shown in the first image of Fig 21 where the

detected vertexes are highlighted, enabled its

integration in our method for the automation

process of 3D buildings’ creation. The result

of its application in the AV3D prototype is

shown in the second image of the same

figure, where the little square represents the

automatic snap vertex resulting from the

merging of the two rooms. The user places

the cursor next to a vertex and if the method

considers that the room can be closed, a new

wall is automatically placed, highlighting the

room blue, thus, preventing errors and

facilitating the process.

Fig 21. Results of the SUSAN Testing and Prototype Implementation

The effectiveness of the application of the

Sobel contour detection algorithm and its

work with several API Emgu CV functions

could be tested and implemented in our

prototype as is shown in Fig 22. In the first

image, detected contours are highlighted in

red. In the second image, corresponding to

the extraction of a texture feature in AV3D,

the user has simply passed the mouse over

the image, thus causing the pattern’s

automatic selection.

Fig 22. Sobel Test Results and Prototype Implementation

The next figure reveals an image of our

prototype extracting the predominant wall

colour of the photograph. The user, by

opening the photograph, can immediately

contemplate the automatically extracted

colour.

International Journal of Interactive Worlds 24

Fig 23. Results of the Prototype’s Colour Extraction Process

These results represent only a small part of

the several tests that were conducted in the

process creation of the method.

AV3D Prototype

AV3D is divided into steps, which correspond

to different objectives, so that the user can

efficiently use it. Several complete house

models were produced with AV3D, and after

a few tests with some subjects who have

never used the application, the results show

that users, after only a few models, tended to

significantly reduce the amount of time

necessary to produce a complete visual

appealing traversable house. Fig 24 shows

the results of the several steps of AV3D.

25 International Journal of Interactive Worlds

Fig 24. Results of Each Step of the AV3D Prototype

Fig 25. Building Interiors

International Journal of Interactive Worlds 26

Fig 26. Building Exteriors

Interior and Exterior Results

Finally, figures Fig 25 and Fig 26 show

several screenshots of a variety of modelled

building’s interior and exterior.

Conclusions and Future Work

In this paper, we have presented a method

for the expedite creation of realistic 3D

buildings’ virtual environments from a set of

selected information (e.g. floor plans,

photographs, amongst others). The method is

capable of constructing a complete virtual

model (exterior, interior and surroundings),

leaving a margin for the perfecting of the

model based on the quality and quantity of

the base information. As a consequence of

the automation of some processes that will

always guarantee good results regardless of

the specificity of the situation, the user has a

reduced interaction level.

We also introduced our AV3D prototype,

which implements the developed method, to

show the simple steps that a user has to

make to create a 3D building in a matter of

minutes (about 10 to 15 minutes). On every

step, the user can apply several automatic

features to facilitate the task and has the

possibility to add more details. The

automatic distribution of objects feature is

also noteworthy. As we have seen in the

related work section, there are some

methods that try to solve this problem.

However, they always present some kind of

constraints to our desired purposes. For this

reason, we developed an algorithm that

works very well for our main objective:

logical distribution of objects in rooms in less

than 3 seconds.

Summarizing, our method presents several

advantages: it is targeted for users without

expertise in architecture or computer

graphics apart from other similar programs;

it is not limited to a digital format, it covers

most of the existing 2D plans; in addition to

the creation of a building it also creates the

surrounding environment; it allows the

extraction of textures and colours from real

photographs; the developed prototype has a

simple and intuitive interface decomposed in

9 steps.

Being such a flexible and realistic method, it

can be applied to many different areas:

architecture, virtual games, cinema, and

simulation programs, amongst others.

Obviously, for each of these different areas,

the method would have to be adapted and

optimized in order to fit specific requisites.

In the future, with the prospect of the

method being able to work directly with

27 International Journal of Interactive Worlds

vector formats (such as DWG), new

approaches that allow a higher level of

automation will be explored, thus, greatly

reducing the work done by the user. This is

also the case with automatic recognition of

floors. We also want to cover more

architectural elements, such as the ones

currently existing in contemporary

architecture houses (balconies inside the

buildings, rooms with the height of two

floors, etc.). Additionally, we will develop a

3D editor to replace the current 2D editor,

since it will allow a more realistic

perspective during all the steps of building

creation.

Acknowledgment

The research described in this paper has

been partially funded by the National

Strategic Reference Framework (NSRF)

which constitutes the framing for the

application of the Community’s policy for

economic and social cohesion in Portugal for

the 2007-2013 period.

References

3D Home Architect, [Retrieved 15 June,

2010], http://www.3dhaonline.com/

Alexander, C., Ishikawa, S. and Silverstein, M.

(1977). "A Pattern Language," Oxford

University Press, New York.

AutoCAD Architecture, [Retrieved 15 June,

2010], http://usa.autodesk.com/

Calderon, C., Cavazza, M. & Diaz, D. (2003). “A

New Approach to the Interactive Resolution

of Configuration Problems in Virtual

Environments,” Proceedings of the 3rd

International conference on Smart Graphics,

2-4 July 2003, Heidelberg, Germany.

Computer Graphics & Knowledge

Visualization, Generative Modeling Language,

[Online], [Retrieved 15 June, 2010],

http://www.generative-modeling.org/

Publisher

Coyne, B. & Sproat, R. (2001). “WordsEye: an

Automatic Text-to-Scene Conversion

System”, Proceedings of International

Conference on Computer Graphics and

Interactive Technologies (SIGGRAPH 2001).

Los Angeles, California, USA, 487-496.

Dijkstra, E. W. (1959). A Note on Two

Problems in Connexion with Graphs,

Numerische Mathematik, 1, 269–271.

Dikaiakou, M., Efthymiou, A. & Chrysanthou,

Y. (2003). “Modelling the Walled City of

Nicosia,” Proceedings of the Virtual Reality,

Archaeology, and Intelligent Cultural Heritage

2003 (VAST). 2003, Brighton, United

Kingdom, 57–65.

Do, I. & Yi, E, (2001). "VR Sketchpad – Create

Instant 3D Worlds by Sketching on

Transparent Window," CAAD Futures, Vries,

B., Leeuwen, J., Achten, H. (Eds.). Kluwer

Academic Publishers, 161-172.

Emgu CV, [Retrieved 15 June, 2010],

http://www.emgu.com

Felkel, P. & Obdrzalek, S. (1998). “Straight

Skeleton Implementation,” Proceedings of

Spring Conference on Computer Graphics,

Budmerice, Slovakia, 210-218.

Finkenzeller, D. (2008). “Detailed Building

Facades,” IEEE Computer Graphics and

Applications, 28, 58-66.

Finkenzeller, D., Bender, J. & Schmitt, A.

(2005). “Feature-based Decomposition of

Façades,” Proceedings of Virtual Concept,

2005, Biarritz, France.

Gaildrat, V. (2007). “Declarative Modelling of

Virtual Environments, Overview of issues

and Applications,” International Conference

on Computer Graphics and Artificial

Intelligence (3IA 2007). 30-31 May 2007,

Athens, Greece.

Gonçalves, A. J. M. & Mendes, A. J. (2003).

“The Rebirth of A Roman Forum: The Case

Study of the Flavian Forum of Conimbriga,”

Proceedings of Enter the Past - The E-way

into the four Dimensions of Cultural Heritage

Congress, April 2003, Wien, Austria.

International Journal of Interactive Worlds 28

Google Sketchup, [Retrieved 15 June, 2010],

http://sketchup.google.com/

Green, B. (2002). “Edge Detection Tutorial,”

[Retrieved November 3, 2009],

http://www.pages.drexel.edu/~weg22/edge

.html

Greuter, S., Parker, J., Stewart, N. & Leach, G.

(2003). “Real-time Procedural Generation of

‘Pseudo Infinite’ Cities,” Proceedings of the

1st International Conference on Computer

Graphics and Interactive Techniques in

Australasia and South East Asia, 11-14

February 2003, Melbourne, Australia.

Hahn, E., Bose, P. & Whitehead, A. (2006).

“Persistent Realtime Building Interior

Generation,” Proceedings of the ACM

SIGGRAPH Symposium on Videogames, ACM

Press, 179-186.

Hart, P. E., Nilsson, N. J. & Raphael, B. (1968).

“A Formal Basis for the Heuristic

Determination of Minimum Cost Paths,” IEEE

Transactions on Systems Science and

Cybernetics SSC4, 4(2). 100–107.

Kashlev, D. (2008). “Ef2icient 3D Building

Model Generation from 2D Floor Plans,”

Master’s Thesis, Department of Electrical

Engineering and Computer Science,

Massachusetts Institute of Technology.

Laycock, R. G. & Day, A. M. (2003).

“Automatically Generating Large Urban

Environments Based on the Footprint Data of

Buildings,” Proceedings of the 8th ACM

Symposium on Solid Modeling and

Applications, 16-20 June 2003, Seattle,

Washington, USA.

Magic Tracer, [Retrieved 15 June, 2010],

http://www.magictracer.com/

Martin, J. (2005). “Algorithmic Beauty of

Buildings Methods for Procedural Building

Generation,” Honors Thesis, Trinity

University, San Antonio, Texas, USA.

Matthews, J. (2002). “An Introduction to Edge

Detection: The Sobel Edge Detector,”

Generation 5, [Online], [Retrieved November

3, 2009],

http://www.generation5.org/content/2002/

im01.asp

Müller, P., Vereenooghe, T., Ulmer, A. & Gool,

L. (2005). “Automatic Reconstruction of

Roman Housing Architecture,” Proceedings

of the International Workshop on Recording,

Modeling and Visualization of Cultural

Heritage, 22-27 May 2005, Ascona,

Switzerland, 287-297.

Müller, P., Vereenooghe, T., Vergauwen, M.,

Gool, L. V. & Waelkens, M. (2004). “Photo-

Realistic and Detailed 3D Modeling: The

Antonine Nymphaeum at Sagalassos

(Turkey),” Proceedings of the XXXII

Computer Applications and Quantitative

Methods to Archaeology Conference (CAA).

April 2004, Prato, Italy.

Müller, P., Vereenooghe, T., Wonka, P., Paap, I.

& Gool, L. (2006a). “Procedural 3D

Reconstruction of Puuc Buildings in Xkipche,”

Eurographics Symposium on Virtual Reality,

Archaeology and Cultural Heritage, 139-146.

Müller, P., Wonka, P., Haegler, S., Ulmer, A. &

Gool, L. V. (2006b). “Procedural Modeling of

Buildings,” ACM Transactions on Graphics, 25,

614-623.

Oh, J., Stuerzlinger, W. & Danahy, J. (2006).

“SESAME: towards Better 3D Conceptual

Design Systems,” Proceedings of the 6th

conference on Designing Interactive systems,

University Park, USA, 80-89.

Oh, Y., Gross, M. D. & Do, E. Y.-L. (2004).

“Critiquing Freehand Sketching – A

Computational Tool for Design Evaluation,”

Proceedings of the Third International

Conference on Visual and Spatial Reasoning

in Design, MIT, Cambridge, USA, 127-133.

Open Geospatial Consortium, Inc., CityGML,

[Retrieved 15 June, 2010],

http://www.opengeospatial.org/standards/c

itygml

29 International Journal of Interactive Worlds

Open Geospatial Consortium, Inc., Geography

Markup Language, [Retrieved 15 June, 2010],

http://www.opengeospatial.org/standards/g

ml

Parish, Y. I. H. & Müller, P. (2001).

“Procedural Modeling of Cities,” Proceedings

of the 28th Annual Conference on Computer

Graphics and Interactive Techniques, 2001,

301-308.

Pearl, J. (1984). Heuristics: Intelligent Search

Strategies for Computer Problem Solving,

Addison-Wesley, 48.

Rodrigues, N., Dionísio, M., Gonçalves, A.,

Magalhães, L. G., Moura, J. P. & Chalmers, A.

(2008a). “Incorporating Legal Rules on

Procedural House Generation,” Proceedings

of the Spring Conference on Computer

Graphics, 21-23 April 2008, Bratislava,

Slovakia.

Rodrigues, N., Dionísio, M., Gonçalves, A.,

Magalhães, L., Moura, J. & Chalmers, A.

(2008b). Rule-based Generation of Houses,

Computer Graphics & Geometry, 10(2). 49-65,

http://cgg-journal.com/2008-2/

Rodrigues, N., Magalhães, L., Moura, J. &

Chalmers, A. (2007). “Geração Automática de

Estruturas Romanas,” Congresso CAA

Portugal 2007, 15-16 November 2007, Leiria,

Portugal.

Rodrigues, N., Magalhães, L., Moura, J. &

Chalmers, A. (2008c). “Automatic

Reconstruction of Virtual Heritage Sites,”

Eurographics Symposium on Virtual Reality,

Archaeology and Cultural Heritage, 2-5

December 2008, Braga, Portugal.

Rodrigues, N., Magalhães, L., Moura, J.,

Chalmers, A., Santos, F. & Morgado, L. (2009).

“ArchHouseGenerator - A Framework for

House Generation,” Proceedings of the

Slactions 2009 International Conference -

Life, imagination, and work using metaverse

platforms, 24-26 September 2009.

Roux, O. L., Gaildrat, V., & Caubet, R. (2004).

"Constraint Satisfaction Techniques for the

Generation Phase in Declarative Modeling,"

Sarfraz, M. (Ed.). Geometric Modeling:

Techniques, Applications, Systems and Tools,

Kluwer Academic Publishers Norwell, MA,

USA, 194-215.

Seversky, L. M. & Yin, L. (2006). “Real-time

automatic 3d scene generation from natural

language voice and text descriptions,”

Proceedings of the 14th annual ACM

international conference on Multimedia, 23-

27 October 2006, New York, USA.

Silva, F., Rodrigues, D. & Gonçalves, A. (2004).

“House of the Skeletons - A Virtual Way,”

Proceedings of the XXXII Computer

Applications and Quantitative Methods to

Archaeology Conference (CAA). April 2004,

Prato, Italy.

Smith, G., Salzman, T. & Stuerzlinger, W.

(2001). “3D Scene Manipulation with 2D

Devices and Constraints,” Graphics Interface

Proceedings 2001, Ottawa, Ontario, Canada,

135-142.

Smith, S. M. & Brady, J. M. (1997). SUSAN – A

New Approach to Low Level Image

Processing, International Journal of Computer

Vision, 23(1). 45-78.

So, C., Baciu, G. & Sun, H. (1998).

“Reconstruction of 3D Virtual Buildings from

2D Architectural Floor Plans,” Proceedings of

the ACM symposium on Virtual reality

software and technology, 2-5 November

1998, Taipei, Taiwan, 17-23.

Sobel, I. & Feldman, G. (1968). “A 3x3

Isotropic Gradient Operator for Image

Processing,” unpublished, presented at a talk

at the Stanford Arti2icial Project in 1968.

Sundstedt, V., Chalmers, A. & Martinez, P.

(2004). “High Fidelity Reconstruction of the

Ancient Egyptian Temple of Kalabsha,”

Proceedings of the 3rd International

Conference on Computer Graphics, Virtual

Reality, Visualisation and Interaction, 2004,

Stellenbosch, South Africa, 107-113.

Tutenel, T., Bidarra, R., Smelik, R. M. & De

Kraker, K. J. (2009). “Rule-based Layout

Solving and its Application to Procedural

International Journal of Interactive Worlds 30

Interior Generation,” Proceedings of the

CASA workshop on 3D advanced media in

gaming and simulation (3AMIGAS). 16 June

2009, Amsterdam, The Netherlands.

Vector Magic, [Retrieved 15 June, 2010],

http://vectormagic.com/home

Vectorworks, [Retrieved 15 June, 2010],

http://www.nemetschek.net/

Willmott, J., Wright, L. I., Arnold, D. B. & Day,

A. M. (2001). “Rendering of Large and

Complex Urban Environments for Real Time

Heritage Reconstructions,” Proceedings of

the 2001 Conference on Virtual Reality,

Archaeology, and Cultural Heritage, 2001,

Glyfada, Greece.

Wonka, P., Wimmer, M., Sillion, F. & Ribarsky,

W. (2003). “Instant Architecture,” ACM

Transactions on Graphics, 22(3). 669-677.

Xu, K., Stewart, J. & Fiume, E. (2002).

“Constraint-Based Automatic Placement for

Scene Composition,” Graphics Interface

Proceedings 2002, May 2002, University of

Calgary, 25-34.

Yeung, W. Y. (2008). “Creation of 3D Model

from 2D Floor Plan,” Final Year Project

Report 2007-2008, Department of Computer

Science, City University of Hong Kong.

