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Abstract 

 

Nowadays, there is a huge need for efficient tools to produce virtual models, mostly urban, in 

several areas such as architecture, movies, games, virtual worlds and commercial applications. 

These models may be either generated “fictional” models or reconstructed models representing 

real world structures. This last option is the motivation behind this paper and past experience has 

shown us that, usually, it is harder to recreate existing models than trying to create new ones.  

 

The purpose of the research here addressed is the de2inition of a method to ef2iciently produce 3D 

models of existing buildings. The method allows the 3D creation of buildings’ structures (interior 

and exterior) and corresponding surrounding environments from existing information such as floor 

plans (in any format), photographs, etc. It also allows the application of different materials 

(textures and colours) to the buildings’ structure and to place and distribute objects logically. The 

method is established through the development of a software prototype – AV3D (Ambientes 

Virtuais 3D – 3D Virtual Environments) – that allows the production of the realistic results shown 

in this paper. 

 

Keywords: 3D building creation, modelling of buildings, virtual environments, furniture 

distribution. 

__________________________________________________________________________________________________________________ 

 

Introduction 

 

The automatic modelling of buildings has 

been one of the great challenges of virtual 

reality, having proved its applicability in 

several areas. The modelling process 

involved in creating a 3D model of an existing 

building, while manual, requires significant 

time and effort. However, the full automation 

of this process, with the objective of 

minimum or non-existent user intervention, 

is almost impossible and is still a problematic 

issue, since it fails in achieving optimal 

results. It is precisely in this aspect that the 

method we have developed intervenes, 

aiming to automate as much as possible the 

processes involved in the creation of 3D 

building models from 2D 2loor plans and to 

produce those optimal results.   

 

In this article we aspire to present a method 

for the expeditious reconstruction of 3D 

building models, from the exterior and 

interior structure to interior and exterior 

distribution of objects as well as surrounding 

environments. This method requires several 

sources of information, such as buildings’ 

floor plans and photographs, in order to 

create complete interactive 3D models that 

represent the house and its surroundings. It 

is also not limited to a digital format, with the 

possibility of being applied to any existing 2D 
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plans. Several known algorithms were used 

and others were developed to fulfill the 

objective of automating as many processes as 

possible (e.g. extraction of textures and 

colours from photographs). More than a 

compilation of techniques, it is a new method 

with new techniques. 

 

Developed for users without knowledge of 

architecture and graphical modelling tools, 

our prototype has a simple and intuitive 

interface and requires a low level of 

interaction with the user because of the 

many automatic features (e.g. logical 

distribution of furniture). The resulting 

outcome, i.e. the 3D models of buildings, 

offers a high level of detail and allows the 

user to navigate interactively or experience 

guided tours automatically created. This 

interesting and versatile method is 

applicable to areas such as architecture, 

video games, cinema and simulation 

programs, amongst others.  

 

This paper is structured as follows. Section II 

presents the related field work. Section III 

provides a general description of the 

proposed method for the efficient creation of 

3D house models. The techniques and 

algorithms used to automate some processes 

are identified and explained in sections IV, V 

and VI. In section VII we present our own 

software prototype named AV3D (Ambientes 

Virtuais 3D – 3D Virtual Environments) as 

well as some tests and results. Finally, 

section VIII concludes the article and 

presents proposals for future work. 

 

Related Work 

 

Contrary to what could be presumed, the 

creation of 3D building models from existing 

information (reconstruction) (e.g. Willmott, 

2001; Dikaiakou et al., 2003; Gonçalves and 

Mendes, 2003; Müller et al., 2004; Silva et al., 

2004; Sundstedt et al., 2004) can indeed 

prove to be a harder task than the generation 

of buildings (e.g. Parish and Müller, 2001; 

Greuter et al., 2003; Laycock and Day, 2003; 

Wonka et al., 2003; Finkenzeller et al., 2005; 

Martin, 2005; Müller et al., 2006a; 

Finkenzeller, 2008; Rodrigues et al., 2008) 

for which there is no existing information. 

The 3D representation of a building that 

exists or has existed in the past involves, in 

most cases, the use of manual methods, thus, 

opposing automatic methods for the 

generation of buildings that commonly use 

techniques related to Procedural Modelling 

(PM). However, even though PM is more 

often associated to the generation of new 

structures, it can also be used to create 

virtual models of structures that exist or have 

existed in the past (e.g. Müller et al., 2005; 

Müller et al., 2006a; Rodrigues et al., 2007; 

Rodrigues et al., 2008). Ideally, the best 

solution would be to combine the best of 

both worlds, i.e. the detail level and realism 

typical of the manual modelling methods and 

the small amount of time necessary to create 

a model that characterizes automatic 

methods. 

 

Urban procedural modelling has been the 

target of numerous existing literatures. The L 

systems, proposed by biologist and botanist 

Aristid Lindenmayer, are parallel rewriting 

systems based on grammars consisting of 

sets of rules. Through these systems, 

complex objects can be defined by replacing 

parts of a simple initial object using a pre-

determined set of rules. Parish and Müller 

(2001) generate a virtual city using L 

systems in the generation of roads from 

maps and in the division of land into lots. 

They also apply L systems in the generation 

of the final geometry of buildings. 

 

Wonka et al. (2003) generated buildings by 

creating facades using split grammars 

(subtype of the shape grammars). Split 

grammars are characterized by rules of 

division that replace a geometric shape with 

several others and rules of conversion that 

transform one shape into another. These 

authors introduced the concept of control 

grammar, which serves the purpose of 

making the distribution of the various 

elements that constitute the facade of a 

building in order to meet architectural rules. 

They also exposed an attribute matching 

system used to specify high-level decisions to 

control the way the facades are generated. 

Although the generated buildings are more 

realistic, users must learn a complex 

grammar and also database rules to specify 
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the attributes. Few years later, Müller, 

Wonka and others (2006b) used the 

knowledge from the pprevious mentioned 

work to propose a new method for 

addressing the problem based on a mass 

model technique. 

 

In the method presented in Greuter et. al. 

(2003), a top down approach is used for the 

generation of the outer facades of a building, 

starting from the roof and proceeding to 

every floor plan until reaching the desired 

height. Each floor plan is constructed through 

the extrusion of random generated polygons 

submitted to scaling, rotation and merging 

operations. Each generated floor plan serves 

as the source base polygon to the next one. 

Lastly, the floor plans are combined with 

union operations. 

 

In the work of Finkenzeller et. al. (2005) it is 

presented a technique for the generation of 

2loor plans and resulting 3D geometry based 

on the decomposition of the architectural 

features of the facades. The floor plans, 

represented by an edge-based format, are 

created by composing convex 2D polygons. In 

this method, a subdivision process is 

performed to build more detailed elements 

such as corners, walls, doors and frames. 

 

One common feature amongst the presented 

research is that these techniques are mainly 

designed for the generation of facades, thus, 

leaving aside the internal structure of 

buildings. Hahn et al. (2006) address this 

matter in real time by dividing rectangular 

floors corresponding to the interior of 

buildings into rectangular rooms and 

hallways. However, the representation of real 

buildings falls out of scope from this work 

because the rooms are formed randomly and 

there are no architectural patterns taken into 

account.  

 

The interior and exterior building generation 

is also the focus of Martins’ approach (2005). 

Still, the presented results lack some realism, 

though it is interesting to notice that some 

architectural issues are taken into account. 

Indeed, the author (and also some of the 

previously mentioned literature) 

acknowledges the architectural patterns 

described in 1977 by Christopher 

Alexander’s in “A Pattern Language” 

(Alexander et al., 1977), which may serve as 

a basis to several architectural applications.  

 

Rodrigues et al. present several methods 

based on architectural rules and laws to 

create virtual 3D models of houses covering 

the generation of modern houses (including 

their interiors) and the reconstruction and 

generation of cultural heritage structures, 

with applications in diverse areas such as 

architecture (Rodrigues et al., 2008a; 

Rodrigues et al., 2008b), Archaeology 

(Rodrigues et al., 2007; Rodrigues et al., 

2008c) and virtual worlds (Rodrigues et al., 

2009). 

 

Another issue addressed in this article 

concerns the automatic distribution of 

furniture in a building’s rooms. This problem 

has been the focus of different approaches. In 

declarative modelling (Roux et al., 2004; 

Gaildrat, 2007; Tutenel et al., 2008), the user 

specifies constraints to describe the 

relationships between objects and is helped 

by semantic knowledge to generate a layout. 

Nevertheless, this type of systems requires 

user interaction and manual descriptions of 

the scene to layout.  

 

In the work of Smith et al. (2001), connection 

areas between the objects are defined. 

Similarly, CAPS system (Xu et al., 2002) 

defines rules for each object that specify 

which type of objects their surface supports. 

However, the system takes several minutes 

to create reasonably complex interiors and 

does not support the featuring of objects on 

ceilings or walls. 

 

Other techniques are used in the automatic 

placement of furniture. For example, natural 

language sentences are used to describe a 

scene in the WordsEye system (Coyne and 

Sproat, 2001).  Calderon, et al. (2003) and 

Seversky and Yin (2006) also present 

approaches based on natural language to 

describe the object rules and relationships 

between objects. Still, because of the known 

ambiguities in natural language, these 

systems are not appropriate as a generic tool 

for object distribution in a scene, along with 
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the fact that they only treat single individual 

scenes. 

 

There are some systems resulting from 

research works related to the 

automatic/semi-automatic modelling of 

buildings from 2D architectural plans. Some 
works (So et al., 1998; Kashlev, 2008; Yee, 
2008) are based exclusively on DXF formats 
and are designed for experienced users. 
These solutions have several limitations: 
they are based solely on plans of the DXF 
format; they cannot generate the exterior 
structure of a house; they do not detect 
windows; they do not support stairs to 
connect floors; they do not allow the 
application of colours or textures on walls, 
ceilings or floors; they do not support the 
distribution of interior objects in the rooms. 
Some other systems are based on building 
plans drafts (Do, 2001; Oh et al, 2004; Oh et 
al, 2006), yet, these have scale imprecisions 
and do not allow the representation of the 
interior of buildings. 
 
In what concerns commercial solutions, there 
are many specific tools that work with both 
2D and 3D models, either generic (e.g. Google 
Sketchup Pro, 2010, and 3D Home Architect, 
2010) or speci2ic, such as architecture 
related tools (e.g. AutoCAD Architecture, 
2010, and VectorWorks, 2010). Despite the 
widespread usage of these tools, they are 
more targeted at architects and designers. 
 
Likewise, there are also languages for the 
representation of geospatial information like 
the Geography Markup Language (GML) 
(Open Geospatial Consortium Inc., 2010); 
languages that enable the description of 3D 
shapes such as the Generative Modelling 
Language (Computer Graphics & Knowledge 
Visualization, 2010); and even more speci2ic 
languages like the CityGML (Open Geospatial 
Consortium Inc., 2010), a GML language 

specialization for the visualization of 
architectural 3D models that requires its own 
specific browser. 
 
Despite all these solutions, they hardly 
represent the most adequate means to 
achieve the desired objective of maximum 
process automation. Therefore, it should be 
intended to represent all geometrical and 
semantical information. This representation 
should be composed in a hierarchical 
correlated fashion that obeys to several 
spatial premises and that gathers all other 
essential requirements for the correct 3D 
representation of a building’s features and its 
surroundings. These factors stimulate the 
development of new methods and specialized 
tools such as the ones presented in this 
article. 
 
Method Description 

 

The purpose of the method addressed in this 
paper is the expedite creation of realistic 3D 
buildings and surrounding environments 
from a set of selected information: floor 
plans, photographs, room areas and 
organization, solar orientation, location, 
surroundings, amongst others.  As a 
consequence of the automation of some 
processes the user has a reduced interaction 
level. 
 
This method is very flexible and produces 
realistic results, needing only minimal 
information to create the 3D buildings. This 
means that it is capable of constructing a 
complete virtual model (exterior, interior 
and surroundings) while leaving a margin for 
perfecting the model based on the quality 
and quantity of the base information. Fig 1 
summarizes schematically the steps required 
by the method to accomplish an existing 
building’s 3D model from a set of input data. 
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Fig 1. Method for the Creation of 3D Buildings 

 

The method is decomposed in three main 

stages:  

 

1. Floor Plan Vectorization: using 

previously digitised plans, the scale is 

automatically detected so that user mistakes 

are avoided and the manual intervention is 

reduced to a minimum. Then, the user must 

contour every room on the floor plans with 

the objective of converting raster format into 

vectorial format. This process is assisted by a 

snap to raster function (snaps into image’s 

pixels) that augments speed and precision. 

An automatic process is also executed for the 

detection of doors and windows, taking into 

account the contours made by the user and 

also the original floor plans. 

 

2. Floor Plan Modeling:  in the vectorial 

floor plans the user can now indicate the 

connections between each floor by placing 

staircases; define the types of floor, walls and 

ceiling, whose real colours and textures can 

be extracted from photos of the real rooms; 

place windows and doors that the automatic 

process did not detect; place interior and 

exterior objects manually or automatically; 

create the roofs; create the surrounding 

environment. 

 

3. 3D Creation:  finally, modelled plans and 

all 2D represented objects are converted into 

a 3D format and the guided tour paths are 

automatically generated. The models’ final 

representation is achieved through the usage 

of VRML/X3D technology.  

 

The following sections present and describe 

all the techniques and algorithms used in the 

different processes of each of the stages of 

the 3D building creation method. 

 

Floor Plan Vectorization 

 

The developed method for the 3D building 

creation is based on its original floor plans. 

Taking as reference the Portuguese example, 

it is observed that few owners possess floor 

plans in digital format and many don’t even 

have the paper floor plans. The legal 

obligation of supplying digital format plans 

to competent authorities has only been 

recently imposed. If the owner does not 

possess the digital format plans, they will 

have to be obtained through requests to 

public entities. Currently, these entities only 

supply building plans in paper format. Due to 

these reasons and because many buildings 

pre-date the aforementioned legal 

imposition, the need to optimize the 

conversion of paper floor plans into digital 

format has become an issue. 

 

The first stage of the method consists of the 

conversion of digitised floor plans into the 

vectorial format aided by snap to raster 

processes and automatic detection of doors 
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and windows. This stage also allows the 

automatic scale detection. 

 

Automatic Scale Detection 

 

The first step of this stage consists of the 

automatic scale detection of the floor plans to 

avoid mistakes that can occur in the manual 

calculation process and to avoid 

overburdening the user with lengthy and 

monotonous tasks.  

 

Typically, floor plans have room measures 

defined as length and width (i.e. metres) or 

as total area (i.e. square metres). So, to 

determine the scale, the user has to carry out 

some calculations. To save the time of this 

manual process, we have developed an 

algorithm – FPSE (Floor Plan Scale Extractor) 

which uses OCR (Optical Character 

Recognition) technology to extract the 

impressed text from a digitised image file 

(raster format). All future calculations are 

then based on the extracted scale. The FPSE 

steps are described in the following flow 

chart: 

 

 

Fig 2. Automatic Scale Detection Flow Chart 
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With the exception of flaws that occasionally 

may occur (for example, due to interferences 

like low quality printing in the floor plans) 

the method produces good results (see 

section VI). 

 

Edge Detection – Snap to Raster 

 

The initial solution to convert raster floor 

plans to vectorial floor plans was to use a 

raster-conversion tool. For this reason, we 

have tested several applications, such as 

Vector Magic (2010) and Magic Tracer 

(2010). Nevertheless, after several tests, we 

found these tools inadequate to our problem 

since the vast majority of existing buildings’ 

floor plans is still on paper format, a support 

prone to conditions such as low quality 

printing, imprecision, dirt and deterioration. 

In addition, many may contain small or 

overlapping details and confusing patterns, 

which prevent these tools from deciphering 

information in a correct way. To employ 

these tools, the user would have to waste a 

lot of time “cleaning” the original image 

(digitised from the paper floor plans) or 

correcting the final result to obtain the 

definitions of the rooms, windows, doors and 

other elements from the mass of vectors 

generated by the tools. This complex and 

time consuming task would compromise the 

automation level we are trying to achieve in 

the 3D building creation process.   

 

Based on the performed tests, we concluded 

that the most effective solution would be the 

creation of a snap to raster function. The 

snap to raster is similar to the snap to grid 

function featured in drawing tools such as 

Microsoft Office Visio, but instead of 

performing the snap into small squares, it 

does so into an image’s pixels. 

 

The objective of the snap to raster function is 

to make the mouse cursor, when 

approaching a corner formed by the floor 

plans’ walls, trigger the application into 

automatically snapping to that corner. In 

other words, the cursor is automatically 

positioned into the corner so that the user 

can draw the walls in a faster and more 

precise manner. By recognizing line 

midpoints, corners, intersections and line 

ends, this functionality enables the user to 

draw over a floor plans’ image.  

 

To implement the snap to raster function we 

use two algorithms: one for corner detection 

and the other for edge detection. For the first 

one, we choose to use the SUSAN (Smallest 

Univalue Segment Assimilating Nucleus) 

algorithm (Smith and Brady, 1997). For the 

second one, we have created a new algorithm 

specifically for that purpose. 

 

The SUSAN algorithm neither makes 

suppositions about the local image’s 

structure around a certain point nor searches 

for interest points (i.e. points that have a 

clear definition, a well-defined position in 

image space and are rich in terms of local 

information contents). Instead, it separately 

analyses several areas by using local direct 

measures and finds places where the 

individual region limits have a high 

curvature, i.e. it finds corners formed by 

individual areas. Thus, in bifurcations 

involving more than two areas (e.g. in a “T” 

form) where more than one single area might 

contribute for the detection of a corner, all 

the intersections will be correctly processed, 

no matter the complexity degree of the 

situation (Smith and Brady, 1997). Fig 3 

shows that in an area where a corner lies a 

quarter of its pixels inside the circular mask 

called USAN (Univalue Segment Assimilating 

Nucleus) the pixels have identical gray scale 

values. For this reason, finding a corner is 

almost equivalent to finding a USAN which 

has a quarter of pixels with identical gray 

scale values. 
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Fig 3. Three Circular Masks at Different Places on an Image Trying to Detect Edges 

 (Adapted from Smith and Brady, 1997) 

 

In the edge detection algorithm, an angular 

search is performed for each angle (with its 

centre at the mouse location), thus, 

measuring the number of adjacent pixels 

traversed. Then, the closest set with a 

number of pixels above a certain threshold is 

chosen. After attaining the pixel set, its centre 

point is calculated and used as the centre of 

the cursor’s closest wall. In the next figure, 

the red dot represents the mouse location, 

the red line represents the closest set of 

adjacent pixels and the blue line 

demonstrates how the set forms a line that 

points to the cursor. 

 

 
 

Fig 4. Edge Detection Process 

 

Detection of Doors and Windows 

 

To increase the level of automation in our 

method, we have added a feature to 

automatically detect doors and windows. The 

algorithm created for this purpose uses a 

recognition technique for geometric shapes 

and is done in real time, as the contours of 

the floor plan are designed by the user. The 

algorithm searches for doors and windows 

above the contours of the image’s floor plan 

and it is divided in three steps described 

next. 

 

 

Extraction of the Search Area of the 

Image’s Floor Plan 

 

In this step, the algorithm starts by cropping 

the parts of the image that lie under each 

wall designed by the user. The new images 

have a length equal to the wall and a width 

equal to the thickness of the designed wall 

plus an increment of 50% tolerance. Fig 5 

shows the four new images extracted from a 

room. If the wall drawn by the user is curved, 

then the part of the image extracted by the 

algorithm is transformed into a straight 

shape so that the algorithm becomes more 

efficient and simpler. 
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Fig 5. Extracted Images from the Room Walls 

 

Detection of Potential Side Edges 

 

The purpose of this step is to identify 

potential side edges of windows and doors 

from the extracted images in the previous 

step. This process consists in the detection of 

vertical lines with a length greater than a 

certain value (i.e. thickness of the wall). Since 

the image scale is known from the scale 

detection step, and the edges of the 

windows/doors are the joints between them 

and walls, the algorithm can make a first 

search for the vertical lines. All the vertical 

lines shorter than the thickness of the wall 

can be discarded because the edge of a 

window/door has a length equal to the wall. 

So, for each image, a search for a vertical line 

is performed for each X coordinate.  

 

After having detected the vertical lines, a 

second filter has to be applied to determine 

those which may be potential 

window’s/door’s borders. A line is an edge of 

a window/door if it has on one side a wall 

and on the other a window/door, or if it has a 

window/door on both sides. Therefore, for 

each detected vertical line, the algorithm 

calculates for each side the percentage of the 

line that is in contact the x-1 and x+1 lines 

(see Fig 6). If at least one of the two sides has 

a contact percentage lower than 75%, then 

the vertical line is considered to be a 

potential edge of a window. 

 

 
 

Fig 6. Detection of Side Edges 
 

Determination of a Window/Door 
 

In this step, each pair of edges is analyzed to 

determine if the pair represents a 

window/door. For each one, horizontal lines 

between the edges are detected. Then, based 

on the information about the edges and 

horizontal lines, a score is calculated to 

determine whether or not the pair defines a 

window/door. 
 

The process is done through the calculation 

of the percentage of pixels that fills the line 

for each Y coordinate. If the value is greater 

than 90%, then it is considered that in the 

current Y coordinate there is a horizontal 

line. In addition, the average colour of the 

line is also calculated. When there are 

adjacent horizontal lines with similar 

colours, then it is considered that these lines 

define a single thick line. 
 

With the potential edges of a window/door 

and with the horizontal lines, the result of the 

score can be found. Through the observation 

of Portuguese floor plans, we have come to 

the conclusion that the windows are usually 

represented in four different ways (Fig 7) 

and the doors in nine ways (Fig 8) 
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Fig 7. Window Types Represented in Floor Plans 

 

 
 

Fig 8. Door Types Represented in Floor Plans 

 

For each type of window, a score is calculated 

and if there is at least one type with a score 

greater than 90%, then the edges de2ine a 

window. The scores are calculated based on 

the following items: 

 

1. Degree of similarity between the left and 

right edge, in terms of both length and 

positioning; 

 

2. Proximity of the horizontal lines in relation 

to the position where they should be; 

 

3. Image area not covered by horizontal lines. 

 

The same goes for the calculation of the score 

for the doors. From the previous 

characteristics, the first and the third ones 

are also applied to the doors. In addition, the 

next items are also taken into consideration:  

 

1. Proximity of the horizontal lines in relation 

to the position where they should be and the 

length they should have; 

 

2. Proximity of the vertical lines in relation to 

the position where they should be; 

 

3. Proximity of the length of the vertical lines 

in relation to the distance between the left 

and right edges – the length of a door must 

equal (considering a threshold value) the 

distance between the edges because when 

the door closes, it is obvious that it must 

range the whole passage. 

 

Floor Plan Modeling 

 

The floor plan modelling stage comprises the 

application of the extraction processes of 

textures and colours, connections between 

floors, objects placement and distribution, 

roof generation and creation of surrounding 

environment in vectorial floor plans. 

 

Texture Extraction 

 

Besides the creation of the inner and outer 

building structure, the developed method 

also allows the extraction of textures from 

real photographs in order to enhance the 

realism of the final building models. 

 

To make the texture application process 

easy, fast and realistic, it was necessary to 

develop a texture extraction process. To 

achieve this goal, we had to resort to a 

common method in image processing, that is, 

the detection of contours in an image. 

Contours in images are strong contrast 

intensity areas (from one pixel to the other). 

Contour detection procedure significantly 
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reduces data quantity and filters useless 

information, thus, preserving the image’s 

structural properties. 

   

The developed texture detecting technique is 

executed when the user needs to add new 

textures to apply to a wall, floor, ceiling, 

window, amongst others. This way, the user 

sees his/her work facilitated by simply 

passing the mouse cursor over an image to 

automatically discover several highlighted 

rectangular areas (most of the times, tiles 

and mosaics) in the cursor’s position. 
 

The technique applied in the automatic 

texture extraction uses existing algorithms. 

Through a specific order of the algorithms 

and by passing the output of one algorithm as 

the input of another, meaningful results are 

attained. This technique employs the Sobel 

operator (Sobel and Feldman, 1968) to 

detect image contours and some Emgu CV 

functions (a cross platform, net wrapper to 

the Intel OpenCV image processing library) 

(Emgu CV, 2010). The technique is described 

as follows: 

 

 
 

Fig 9. Automatic Texture Extraction Process 

 

The Sobel operator calculates the image 

intensity gradient in each point, giving the 

direction of the maximal possible increase 

from light to dark and the change rate in that 

direction. The result shows the abrupt or 

smooth changes verified in the image at that 

specific point, permitting to conclude 

whether that part of the image represents a 

contour and which is its orientation (Green, 

2002; Matthews, 2002). 

 

Sobel presents quite effective results in cases 

where the passage from one colour to 

another is quite strong (for example, from a 

blue tile to a white joint). However, when the 

passage is subtle (in the case of a white or 

light grey tile to a white joint) Sobel 

experiences some problems in contour 

recognition. Nevertheless, it presents a good 

tolerance to interferences, it possesses a low 

error rate, it is effective and it is 

computationally more efficient than other 

analyzed algorithms (for example, Prewitt, 

LaPlace, Canny, amongst others).  
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The correct preparation of an image through 

the use of the Sobel operator and some Emgu 

CV functions allowed the texture extraction 

technique to present very good results (see 

results in Fig 22). 

 

Colour Extraction 

 

The same way the texture extraction is 

important in the 3D building creation 

method, so is the colour extraction from a 

photograph. Together they represent two 

techniques significant in process automation, 

thus preventing the need of user 

intervention. 

 

Taking as example a common photograph of 

a wall, we can observe that a wall might have 

undesired objects such as doors, windows, 

furniture, paintings, and others. Also, a wall 

rarely presents the same colour throughout 

its extension due to factors such as shadow 

and reflexes created by lighting, dirt, or even 

painting flaws. This way, we have developed 

a new colour extraction algorithm that takes 

into account the referred incidents. 

Nevertheless, it does not consider the fact 

that the photograph colours may be altered 

due to interior shadows or brightness from a 

nearby window. 

 

The algorithm, named DBCE (Density Based 

Colour Extractor), searches the “centre” of 

the most common colour sets present in the 

image. Basically, the image is converted into 

a three-dimensional cube whose actual 

dimensions represent one of the RGB colour 

(Red, Green and Blue) components. Each 

cube dimension has got a 256 length that is 

representative of the 256 different values a 

colour component might have. Each small 

square contains a numeric value that 

indicates the pixel quantity of a certain 

colour present in the image. 

For instance, if there are 120 pixels with the 

RGB colour 255, 0, 0 (red) in an image, the 

small square in the 255, 0, 0 coordinates will 

have a value of 120. With the 3D cube, one 

must only find its denser inner location and, 

based in a diameter 6 sphere, obtain the 

image’s most common colour. When 

searching for the denser location, it is taken 

into account that the larger the square value 

is, larger will also be its weight. Since the 

sphere contains the denser location, its 

centre will present the final colour that is the 

one that exists in larger quantities in the 

image. To illustrate the technique, we 

provide the following pseudo-code 

description: 

 
Color 
DensityBasedColourExtractor 
(Color[][] image, Integer                 
                              
imageWidth, Integer imageHeight) 
{ 
   cubeRGB = new 
Integer[256][256][256] 
   for(x=0; x<imageWidth; x++) 
      for(y=0; y<imageHeight; 
y++) 
      { 
         color = image[x][y] 
         cubeRGB[color.Red][colo
r.Green][color.Blue]++ 
      } 
   radius = 3 
   best = 0 
   bestColor = null 
   for(r=radius; r<256-radius; 
r++) 
      for(g=radius; g<256-
radius; g++) 
         for(b=radius; b<256-
radius; b++) 
         { 
            sum = 0 
            for(r1=r-radius; 
r1<r+radius; r1++) 
               for(g1=g-radius; 
g1<g+radius; g1++) 
                  for(b1=b-
radius; b1<b+radius; b1++) 
                     sum = sum + 
cubeRGB[r1][g1][b1] 
            if(sum>best) 
            { 
               best = sum 
               bestColor = new 
Color(r,g,b) 
            } 
     
 

     }    return bestColor 
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} 
 

Connections between Floors 

 

A house or even an apartment might have 

several floors usually connected by stairwells 

which are also supported by the present 

method. This way, when it becomes necessary 

to create a connection between two floors 

through stairwells to allow the user to freely 

navigate among floors, the method takes into 

consideration ceiling and floor gaps in 

staircases’ start and end floors. The placement 

of staircases is done as follows: 

 
If first step does not overlap a 
wall 

Valid step 
Select staircase type 
If building possesses more than 
two floors  

Select destination floor 
Else 

Remaining floor is       
automatically selected 

Define position of the last step 
through the alteration of 
staircase length and/or width 
If no overlapping situations in 
start and end floors between 
walls and staircase positions 

Ladder successfully created 
 

Once the staircase is placed, the user should 

insert the stairwell’s ceiling and floor 

dimensions so that navigation between floors 

is possible. The ceiling gap should always have 

one of its sides touching the last step of the 

staircases, otherwise, it will be considered 

invalid by the method as it can be seen in the 

first image of Fig 10. This is a manually 

conducted process because the ceiling gap 

dimensions are always different from case to 

case and do not follow a standard that could be 

incorporated in the method. From the moment 

the gap is correctly placed, the user can be 

assured that after the 3D model is created 

he/she will be able to navigate among floors. 

 
 

Fig 10. Structure Opening between the Staircase’s Two Floors: Invalid (Left) and Valid (right). 

The Rectangle with the Thicker Line Represents the Ceiling Gap 

 

Objects Placement 

 

Besides reproducing the interior structure of 

the buildings, in our method it is also possible 

to augment the 3D models realism by placing 

several interior objects (like furniture, 

fireplaces and decoration objects) and exterior 

objects (such as trees, flowers, garden tables 

and chairs). 

 

Interior objects have been classified according 

to three positioning places: floor, ceiling, and 

wall. In the first place are included most of the 

house objects: tables, sofas, beds, bathtubs and 

so on. Ceiling type objects include lamps, fans, 

amongst others. At last, wall objects include 

paintings, wall lamps, kitchen cupboards, and 

others.  

    

Object positioning is done in 2D through the 

use of the information contained in a 3D object 

database. When rendering objects, every single 

one is considered according to its containing 

box or bounding box. This way, any object is 

placed as close as possible to the ceiling, wall 

and/or floor. A wall object, like for example a 

kitchen cupboard, will have marked in its entry 

in the database which sides of the cube can be 

placed against the walls and its distance from 

the floor, so that it can be correctly placed in 

the 2inal 3D model. 

 

To make sure the task of object positioning is 

quick, the method enables to snap the object 

towards the nearest wall in the moment of its 

placement inside the room. In the example of 

the kitchen cupboard, its front can never be 

placed against a wall because its definition in 

the database already defines that only the back 

is permitted to do so. When an object features 

more than one of such sides, it is the closest to 

the wall that will be privileged or, 
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alternatively, the side that requires the object’s 

minimal rotation (Fig 11). 

 

 
 

Fig 11. Object Automatic Snap towards the Nearest Wall 

 

The method also allows the positioning of an 

object over another, meaning that it is 

possible to place a television on the top of a 

TV table. This type of object positioning had 

to be developed in a different way, since in 

some cases the objects’ bounding boxes could 

not be used. This is due to the fact that 

objects seldom result in perfect cubes. If the 

positioning was guided through the objects 

bounding boxes the outcome would be 

unrealistic (see left image of Fig 12). 

To solve this problem, objects are 

decomposed into smaller parts. For example, 

in the right image of Fig 12, if it is intended to 

place a jar-object on top of the table with 

chairs, the jar’s bounding box is placed as 

near as possible to the table’s top (the object 

that is placed immediately below). Thus, 

since there are no overlapping bounding 

boxes or spacing, the result is correct for the 

human eye. 

 

 

 
 

Fig 12. Wrong Jar-Object Positioning (Left) and Right Positioning (Right) 

 

Objects Distribution 

 

In our method, it is also possible to distribute 

objects automatically through the rooms of 

the building. Following a room by room 

approach because of the function specificity 

in each room, the created algorithm performs 

the furniture distribution according to 

placement constraints and a set of semantic 

rules attained from the observation of real 

floor plans and from common sense. The 

method allows the objects to be placed 

arbitrarily but achieving stable 

configurations (according to their placement 

constraints and semantic rules) which results 

in layouts of visual richness and realism. 

 

A set of constraints is associated with each 

type of object to define where the object may  

 

 

or may not be placed. The proximity 

constraints type determines the minimum 

space that is necessary to exist between the 

objects. Another type of constraints defines if 

the top surface of an object can support other 

objects, or the opposite: if an object can be 

placed in the top surface of others. 

 

To create realistic and coherent layouts, the 

distribution of objects is ruled by semantic 

rules including definitions for the function 

and fragility of objects, and for the 

interactions and relationships between them. 

The algorithm uses the already referred 

database of 3D objects which contains all the 

information necessary to the placement 

calculations. 
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When planning a logic layout, this automatic 

functionality also considers only the 2D 

bounding boxes to plan where an object is to 

be placed. This is due to the very complex 

shapes that 3D objects can have. 

 

The method is decomposed into three steps: 

choosing the objects to be placed in the 

house, determine the objects positions 

according to constraints and lights 

placement. 

 

Objects Selection 

 

The objects that will be placed in a room 

depend on the room type and its specific set 

of objects. For instance, a toilet, a bathroom 

sink and a bathtub only appear in a 

bathroom. However, it does not mean that a 

given room will receive all the objects that it 

is supposed to. There may be situations 

where not all the objects can be placed due to 

insufficient space, door passage blocking, 

collisions between objects and opening 

doors, or even objects overlapping with 

windows. 

 

So, the first thing that the algorithm does is 

to determine what object types will be placed 

in a given room according to its function. 

Randomly, the algorithm will choose the 

object types and quantities from each one 

according to a set of rules. 

 

Then, the algorithm randomly chooses for 

each object type the specific object from the 

database to place. For performance issues, if 

a particular object was chosen in a room, and 

if the object type is repeated in another 

room, the same object will be chosen for this 

last room. This minimises the number of 

different objects being used in the house, 

therefore, reducing the size of the final 

model. 

 

Objects’ Positions 

 

For wall objects, i.e. objects intended to be 

placed on walls, the selection of walls where 

they can be placed against is done according 

to their length and their distance from the 

door of the room. So, the walls may or may 

not be ordered according to their distances 

from the door of the room. 

 

For some rooms, priority is given to the walls 

where certain objects can be placed side by 

side (e.g. in a bathroom the priority is given 

to the wall that can support a bidet and a 

toilet). In this situation, the lengths of the 

objects’ bounding boxes are added along 

with the value of the minimum spacing 

between them, which is obtained according 

to their proximity rules. Until the algorithm 

finds a wall to place the objects’ sequence, 

the objects will keep being removed and 

placed on separate walls. 

 

If an object is to be placed close to the door, 

then the walls where it can be placed are 

ordered upwardly by the distance between 

the centre points of the wall and door 

passage. On the other hand, if an object is to 

be placed far from the door, then the walls 

are ordered in descending order of distance 

to the doors. For an object that can be placed 

randomly (e.g. plants or paintings) its walls 

are arbitrarily ordered. 

 

Another aspect to account for is the 

relationships between objects, so that the 

objects with no dependencies are placed first. 

For example, in a bathroom the sink is 

usually placed closest to the door, right after 

that the bidet is placed and finally the toilet. 

In this situation the toilet depends on the 

bidet and the bidet depends on the sink. 

Since the sink has no dependencies, it is the 

object to be placed first.  

 

Most of the objects are placed against a wall 

with specific layout rules (e.g. object placed 

on the side of a wall closest/farthest to/from 

the door). For random placement objects an 

arbitrary position in the wall is chosen. If an 

object is to be placed side by side with a 

previously placed object, it is placed 

immediately after the positioned object with 

the appropriate spacing obtained from the 

proximity rule set.  

 

Once an object is placed, its position is 

adjusted so it does not overlap any 

previously placed objects, walls or opening  
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doors. This procedure is done by using 

simple geometric operations such as line 

intersection detection and “point in polygon” 

checking. Still, there may be situations where 

overlaps still occur. If it is the case of side by 

side sequences, an object is removed and 

placed on a separate wall. If not, either an 

object is switched to a smaller object type 

(e.g. bathtub replaced by a shower) or if it is 

a non-critical object, it is simply removed 

(e.g. a bidet). In both cases, the placement 

algorithm starts over. 

 

There are other situations where objects may 

not be placed against walls, such as dining 

tables or a sofa in front of a TV with no wall 

behind it. In this last case, to perform this 

type of placement, real and false walls are 

used by the algorithm and a set of semantic 

rules are used. In the sofa and TV example, to 

determine whether or not false walls are 

needed, it must first be determined if there is 

enough space on the existing walls where the 

objects may fit and at the same time if those 

walls are not too far from the TV. If there is 

not enough space using existing walls, then 

false walls must be calculated. False walls 

de2ine a 2D bounding box that does not 

overlap any existing walls, so the objects 

cannot be placed against its edges neither too 

far nor too near from the TV.  

 

When calculating the bounding box, real 

walls that are at the right distance to the TV 

and have an angle close enough to the angle 

of the wall where the TV is, can be used for 

determining the far edge of the box. If a wall 

is at the right distance to the TV and has an 

angle close enough to the perpendicular of 

the wall where the TV is, then it can be used 

for determining a lateral edge of the 

bounding box, as it can be seen in Fig 13 

 

. 

 
 

Fig 13. Created Bounding Box of False Walls (thicker rectangle) for the Positioning of Objects 

around the TV 

 

If there are no existing walls that can be used 

to determine either the far edge or the lateral 

edge of the bounding box, then a random 

edge is calculated within the minimum and 

maximum distance to the TV. 

 

Once the bounding box is calculated, the 

living room objects can be placed as if its 

edges were real existing walls. 

 

Placement of Light Sources 

 

The algorithm’s last step consists of the 

placement of lights throughout the rooms of 

the house. Lights can be placed in four 

different ways: against the walls, on the floor, 

over the furniture or against the ceiling. In 

the case of floor and over the furniture lights, 

the placement is treated as with all the other 

objects in the previous step. 

 

In wall lights placement, the algorithm starts 

by obtaining all the walls that can receive 

lights (even parts of walls between windows, 

doors or already placed objects). Once the 

walls are obtained, the number of lights 

needed is calculated dividing the total length 

of original walls in the room by the maximum 

length of wall that a light can illuminate. 
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The next step is to evenly distribute the 

number of lights through the obtained walls. 

In Fig 14, an example can be seen of a room 

with a total original wall length of 39 metres, 

a usable wall length of 34 metres and where 

each light can illuminate a 4 meter radius. 

The lights are represented by red dots, the 

blue lines represent walls that can receive 

lights, the dark rectangles represent 

windows and the opening on the left wall 

represents a door. In this example, starting 

from the door on the left wall, the algorithm 

attempts to place lights at equal distance 

from each other (i.e. 4 metres) and when a 

light happens to lie on a portion of wall that 

can’t receive a light, the algorithm jumps to 

the beginning of the next valid wall and 

places the light there. Once the desired 

number of lights has been placed or the 

entire perimeter of the room has been 

traversed, the algorithm ends. 

 

 
 

Fig 14. Placement of Wall Lights in a Room 

 

If a light is to be placed on a ceiling, the 

placement becomes a little more complex. 

First, the algorithm has to find all the 

different angles defined by the room’s walls 

(see Fig 15). 
 
Next, it rotates the room by each determined 

angle and for each one calculates horizontal 

lines that represent paths where lights can be 

potentially placed. These lines have to be 

placed in a way that allows the room to be 

completely illuminated and at the same time 

with the least amount of lights. Therefore, the 

lines will have to be placed as far apart as 

possible with a spacing no greater than the 

diameter of illumination of the lights to place. 

To achieve the correct number of lines and 

their positions, the following calculations are 

made: 

 
 
 

 

 

 

 

1. number_of_lines = Round up (rotated_room’s_height / diameter_of_illumination) 

 

2. new_diameter_of_illumination = rotated_room’s_height / number_of_lines 

 

3. Place the 2irst line at: y = new_diameter_of_illumination / 2 

 

4. Place remaining lines at: distance of new_diameter_of_illumination from the 

previous line. 
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For each calculated horizontal line, the 

portions contained inside the room are 

calculated using line intersection equations. 

After that, for each line segment the length is 

calculated, then divided by the diameter of 

illumination and finally rounded up to 

determine the necessary number of lights. 

The lights can then be evenly distributed 

along the line segment. For example, in Fig 

5a) the room’s height is 20 m and the 

diameter of illumination of each light is 12 m. 

The following calculations can be done: 

 

• number_of_lines = Round up (20 / 12) = 2 
 

• new_diameter_of_illumination = 20 / 2 = 10 

• Place the 2irst line at: y = 10 / 2 = 5 

 

• Place remaining lines at: y = 5 + 10 = 15 

 

For each light, a verification is also made to 

determine if there are already any lights in 

the vicinity with a distance less than or equal 

to the radius of illumination. If such a light 

exists, then the current light isn’t placed. This 

process is done for each line segment and for 

each different angle earlier determined, 

because there may be situations where the 

simple distribution of lights in the room may 

produce regions without illumination due to 

the shape of the room (see Fig 15 b). 

 
 

Fig 15. Light Ceiling Positioning (a) Trapezium Shaped Room (b) Cross Shaped Room 

 

Roof Generation 

 

Roofs can be extremely complex building 

features. For example, in a two floor house, 

there might be roofs other than the main one 

on the top floor, like some kind of roof 

protecting the entrances of the house. 

Moreover, the roof might just be flat or have 

some different heights, and might have 

curves or slopes.  

 

In this method, roof generation uses the 

Straight Skeleton algorithm presented by 

Felkel and Obdrzálek (1998). The Straight 

Skeleton algorithm enables the generation of 

hip roof types in straight walls’ buildings. 

However, some alterations were conducted 

so that it would become possible to extend it 

to the creation of roofs for buildings with 

curved walls. This way, and because there is  

a range of different real roofs, these 

alterations contributed to increase the 

buildings’ realism. 

 

In a practical level, the modified algorithm, 

besides calculating the straight skeleton for 

straight polygons, can also carry through the 

calculations for curved polygons. For a 

certain corner, the straight skeleton 

calculates the angles of the two straight lines. 

The result is the medium value of the two. In 

the case of a corner composed by a straight 

line and a curved one, the angle of the latter 

is determined by its vertex tangent. So, every 

time the algorithm finds a curve in the roof’s 

polygon, it calculates the straight line tangent 

to the curved line in the vertex and uses it as 

if it was the roof’s straight line. The following 

results are achieved: 
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Fig 16. Modified Straight Skeleton Algorithm Calculations for Straight and Curved Lines 

 

 

Surrounding Environment Creation 

 

The creation of houses’ surrounding 

environments consists in the definition of 

terrain areas, placement of exterior objects 

and setting the view that the observer will 

see when looking out to the horizon of the 

2inal 3D model. 

 

The creation of the terrain is done by 

de2ining 2D polygons that represent land 

areas. For example, one polygon could 

represent a grass area and another polygon 

could represent a concrete driveway. In 

addition, global slopes can be applied to the 

areas.  

 

Next, objects such as trees, flowers, picnic 

tables and so on, can be set on the areas. An 

exterior object can have one of two types of 

placement: flat against the ground or placed 

vertically. In the first type, if the land has an 

inclination, the object will also be inclined so  

 

 

that it continues flat against the ground. In 

the second type, the object is placed 

vertically, no matter what the land’s 

inclination is, so that a tree, for example, does 

not tip. For this type of placement, an 

algorithm must be applied to determine the 

objects’ correct altitude at the same time that 

it ensures that it will not float above the 

ground in the 2inal 3D model (see 2irst image 

of Fig 17).To achieve these results, the 

object’s bounding boxes are decomposed into 

smaller parts, just like the positioning of 

interior objects above others. In the second 

image of Fig 17, the tree is divided in two 

parts: treetop and trunk. Then, the geometry 

of the lowest part of the object, i.e. the one 

that comes in contact with the ground, will be 

used to determine the object’s final altitude 

ensuring that no part of the object will float 

above the ground. In the third image of Fig 

17, the trunk’s geometry is used to achieve 

the correct positioning. 

 

 

 
 

Fig 17. Tree Placement in a sloping Terrain 

 

Finally, the creation of the horizon view that 

will be visible in the 3D 2inal model consists 

in setting a panoramic image that is wrapped 

around the exterior of the building,  as if one 

placed a cylinder surrounding the building 

with a 360º image placed in the inside of the 
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cylinder. There are two different methods to 

apply the panorama in the model. In the first 

one, a single image is wrapped around the 

entire exterior of the building and, in the 

second, four different images are used with 

each one being visible to the observer 

depending on the direction where he/she is 

looking. In this second method, each image, 

corresponding to the North, East, South and 

West views, will be placed in a half cylinder. 

Fig 18 indicates what image is shown 

according to the observer’s orientation. For 

example, if the orientation is between 45 and 

135 degrees, the North image is shown. 

 

 
 

Fig 18. Panorama Orientation Degrees 

 

3D Creation 

 

The last step of our method consists of the 

building’s 3D creation. The 2inal 3D models 

were represented using VRML/X3D 

technology. The next sections describe the 

process in detail starting from the generation 

of 3D geometry up to the automatic creation 

of tour paths. 

 

3D Geometry Generation 

 

3D geometry is achieved in three steps. First, 

walls are raised from the floor plan. Then, 

doors and windows are created and house 

objects (e.g. furniture) are added. Also, the 

exterior objects of the surrounding 

environment are added in this step. Finally, 

roofs are also created and added to the final 

model along with the panorama view.  

 

When creating the walls a 2D polygon is 

generated with the defined length and height 

for each of the edges of the exterior walls’ 

floor plans. For the interior walls, each room 

of the house is browsed and for each one all 

edges are accounted for in order to create the 

polygons that compose the inner building’s 

walls. After the walls are parsed, floor and 

ceiling planes are also added, one for each 

room. In addition, the terrain areas are also 

added to the surrounding environment of the 

house. 

 

In the second step, the integration of doors 

and windows starts with the subtraction of 

rectangles from inner and outer walls in the 

respective places represented in the floor 

plans. After the holes are made, these are 

filled with the geometry of corresponding 

doors and windows. Both windows and 

doors can be of three types: surrounding 

frame, bottom frame or frameless.  For the 

surrounding frame, the 3D creation process 

applies a frame to all edges; for the bottom 

frame, a frame is applied only to the bottom 

edge; as for the last type, no frame is applied. 

 

The addition of objects to the model is done 

using a database with 3D objects in 

VRML/X3D format. This object database was 

previously used in the object distribution 

stage for the choice of the objects to 

distribute in the floor plan.  

 

The algorithm used in the third step, taking 

into account the 2D layout plan, searches the 

VRML/X3D 3D object database to 2ind each 

necessary object. The algorithm uses 3D 

bounding boxes and makes all the scale 

modifications that may be needed for the 

objects to fit in the appropriated place. After 
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that, all 3D objects are placed in the correct 

locations. However, in the case of interior 

objects that need to be placed in top of 

others, these have to be decomposed in 

smaller objects to determine the vertical 

positioning. 

 

Finally, in the last stage, the roof structure 

and the panorama view are added. First, all 

edges of the roof are created according to the 

2D 2loor plan. Then, the remaining roof is 

created by following a straight skeleton 

approach. Lastly, to enhance the realism of 

the roofs, 3D half-cylinders are placed on 

each of the straight skeleton edges to 

represent the roof spines. 360º images are 

also placed around the building and added to 

the final model. 

 

After the execution of all previous stages, the 

geometry is modelled into VRML or X3D. 

Both technologies allow the visualization of 

all elements of the building (exterior, interior 

and surroundings components) through a 3D 

perspective where the user can navigate 

through the exterior and interior of it. To 

increase the realism of the scene, the 

generated models also include collision 

detection, proximity sensors for turning on 

lights and opening/closing doors. 

 

Calculation of the Guided Tour Path 

 

The 3D models created by our method offer 

two types of interaction: manual or 

automatic. In the first type, the visitor can 

freely explore the building, both exteriorly 

and interiorly, through the usage of keyboard 

and mouse.  In the automatic interaction, i.e. 

guided tour, the users can visit the entire 

building without having to learn how to 

operate with VRML/X3D viewers. The 

visitors watch a guiding film that takes them 

through the exterior and into the interior 

rooms. This last interaction kind is achieved 

through paths automatically pre-calculated 

when the 3D model creation was being 

concluded.  

 

To calculate the guided tour’s automatic path 

through the 3D building we have created the 

algorithm named FPPC (Floor Plan Path 

Calculator). FPPC is based on the A* 

algorithm (Hart et al, 1968), which is one of 

the most popular and flexible algorithms 

used in the path search problem resolution, 

from a start point to an objective-point, 

avoiding obstacles and minimizing 

computation costs. 

 

The A* algorithm is a combination of two 

others: the Dijkstra algorithm (Dijkstra, 

1959), used to 2ind the shortest path, and the 

Best First Search (BFS) (Pearl, 1984), which 

is guided by a heuristic. The success of the A* 

algorithm lies in the combination of pieces of 

information used by Dijkstra, such as the 

privileging of vertexes closer to the 

departure point, and others used by the BFS, 

namely the privileging of vertexes closer to 

the objective. 

 

The FPPC algorithm applied in the guided 

tour is based on the shortest and simplest 

path calculations of A*, but with some 

modifications. It uses a predetermined room 

as a start point and another as an objective 

point. Because in the A* the touring area 

must be converted in squared space where 

each small square is marked as areas that can 

or cannot be crossed, the result is a set of 

small squares that define the ones that have 

to be crossed from the start point to the end 

point. Considering that the house is a 

continual space and not a discrete one, the A* 

results are worked in optimizing fashion, 

avoiding abrupt direction changes, typically 

vertical, horizontal and diagonal paths and 

others (see Fig 19). 
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Fig 19. Results and Optimisation of the A* Algorithm Path 

 

As a result, the trajectory of the 3D building 

that the user sees is the best-path calculated 

with the objective of tour optimization. 

 

Tests and Results 

 

This section presents the results of some of 

the used techniques, AV3D – the developed 

software prototype to test the method – and 

some images with 3D 2inal models produced 

with AV3D. The results presented in this 

section and in the last one were obtained on 

a system equipped with an Intel Core 2 Duo 

at 2.67GHz with 4 GB of RAM. 

 

However, minimum requirements for AV3D 

can be provided by a system equipped with 

an Intel Pentium 4 at 1.3 GHz with 2 GB of 

RAM. 

 

Used Techniques 

 

The automatic detection of the floor plan’s 

scale is realized by the user through the 

opening of the floor plan by simply clicking 

on the Estimate Scale button. Rapidly, the 

application shows the result of a 47 pixels 

scale, as it can be seen in Fig 20. 

 

 

 
 

Fig 20. Automatic Scale Detection Calculation Results 

 

In the previous figure, the lounge room has a 

5.0m width and a 235 pixels distance 

between walls. Dividing 235 by 5 we obtain 

the 47 pixels per metre scale. If the strings 

were defined in square metres and not in 

metres, and the lounge room had a 17 square 

metres area, the calculations would be as 

follows: 
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• ratio = 160 / 235 = 0,68 
 
• width_in_metres = √ (17 / 0,68) = 5 m 
 
• scale = 235 / 5 = 47 pixels per metre 
 
SUSAN’s effectiveness in vertex detection, 

shown in the first image of Fig 21 where the 

detected vertexes are highlighted, enabled its 

integration in our method for the automation 

process of 3D buildings’ creation.  The result 

of its application in the AV3D prototype is 

shown in the second image of the same 

figure, where the little square represents the 

automatic snap vertex resulting from the 

merging of the two rooms. The user places 

the cursor next to a vertex and if the method 

considers that the room can be closed, a new 

wall is automatically placed, highlighting the 

room blue, thus, preventing errors and 

facilitating the process. 

 

 
 

Fig 21. Results of the SUSAN Testing and Prototype Implementation 

 

The effectiveness of the application of the 

Sobel contour detection algorithm and its 

work with several API Emgu CV functions 

could be tested and implemented in our 

prototype as is shown in Fig 22. In the first 

image, detected contours are highlighted in 

red. In the second image, corresponding to 

the extraction of a texture feature in AV3D, 

the user has simply passed the mouse over 

the image, thus causing the pattern’s 

automatic selection. 

 
Fig 22. Sobel Test Results and Prototype Implementation 

 

The next figure reveals an image of our 

prototype extracting the predominant wall 

colour of the photograph. The user, by  

opening the photograph, can immediately 

contemplate the automatically extracted 

colour. 
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Fig 23. Results of the Prototype’s Colour Extraction Process 

 

These results represent only a small part of 

the several tests that were conducted in the 

process creation of the method. 

 

AV3D Prototype 

 

AV3D is divided into steps, which correspond 

to different objectives, so that the user can 

efficiently use it. Several complete house 

models were produced with AV3D, and after 

a few tests with some subjects who have 

never used the application, the results show 

that users, after only a few models, tended to 

significantly reduce the amount of time 

necessary to produce a complete visual 

appealing traversable house. Fig 24 shows 

the results of the several steps of AV3D.
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Fig 24. Results of Each Step of the AV3D Prototype 

 

 

 
 

Fig 25. Building Interiors 
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Fig 26. Building Exteriors 

 

 

Interior and Exterior Results  

 

Finally, figures Fig 25 and Fig 26 show 

several screenshots of a variety of modelled 

building’s interior and exterior. 

 

Conclusions and Future Work 

 

In this paper, we have presented a method 

for the expedite creation of realistic 3D 

buildings’ virtual environments from a set of 

selected information (e.g. floor plans, 

photographs, amongst others). The method is 

capable of constructing a complete virtual 

model (exterior, interior and surroundings), 

leaving a margin for the perfecting of the 

model based on the quality and quantity of 

the base information. As a consequence of 

the automation of some processes that will 

always guarantee good results regardless of 

the specificity of the situation, the user has a 

reduced interaction level.  

 

We also introduced our AV3D prototype, 

which implements the developed method, to 

show the simple steps that a user has to 

make to create a 3D building in a matter of 

minutes (about 10 to 15 minutes). On every 

step, the user can apply several automatic 

features to facilitate the task and has the 

possibility to add more details. The 

automatic distribution of objects feature is 

also noteworthy. As we have seen in the 

related work section, there are some 

methods that try to solve this problem. 

However, they always present some kind of 

constraints to our desired purposes. For this 

reason, we developed an algorithm that 

works very well for our main objective: 

logical distribution of objects in rooms in less 

than 3 seconds.  

 

Summarizing, our method presents several 

advantages: it is targeted for users without 

expertise in architecture or computer 

graphics apart from other similar programs; 

it is not limited to a digital format, it covers 

most of the existing 2D plans; in addition to 

the creation of a building it also creates the 

surrounding environment; it allows the 

extraction of textures and colours from real 

photographs; the developed prototype has a 

simple and intuitive interface decomposed in 

9 steps.  

 

Being such a flexible and realistic method, it 

can be applied to many different areas: 

architecture, virtual games, cinema, and 

simulation programs, amongst others. 

Obviously, for each of these different areas, 

the method would have to be adapted and 

optimized in order to fit specific requisites. 

In the future, with the prospect of the 

method being able to work directly with 
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vector formats (such as DWG), new 

approaches that allow a higher level of 

automation will be explored, thus, greatly 

reducing the work done by the user. This is 

also the case with automatic recognition of 

floors. We also want to cover more 

architectural elements, such as the ones 

currently existing in contemporary 

architecture houses (balconies inside the 

buildings, rooms with the height of two 

floors, etc.). Additionally, we will develop a 

3D editor to replace the current 2D editor, 

since it will allow a more realistic 

perspective during all the steps of building 

creation. 
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