
IBIMA Publishing

International Journal of Interactive Worlds

http://www.ibimapublishing.com/journals/IJIW/ijiw.html

Vol. 2012 (2012), Article ID 418638, 19 pages

DOI: 10.5171/2012.418638

Copyright © 2012 Panagiotis Petridis, Ian Dunwell, David Panzoli, Sylvester Arnab, Aristidis Protopsaltis,

Maurice Hendrix and Sara de Freitas. This is an open access article distributed under the Creative Commons

Attribution License unported 3.0, which permits unrestricted use, distribution, and reproduction in any

medium, provided that original work is properly cited. Contact author: Panagiotis Petridis E-mail:

PPetridis@cad.coventry.ac.uk

Game Engines Selection Framework for

High-Fidelity Serious Applications

Panagiotis Petridis
1
, Ian Dunwell

1
, David Panzoli

2
, Sylvester Arnab

1
,

Aristidis Protopsaltis
1
, Maurice Hendrix

1
 and Sara de Freitas

1

 1
Serious Games Institute, Coventry University Technology Park, Coventry, West Midlands, UK

2
IRIT-UT1C, Université Toulouse I Capitole, France

__

Abstract

Serious games represent the state-of-the-art in the convergence of electronic gaming technologies

with instructional design principles and pedagogies. Despite the value of high-fidelity content in

engaging learners and providing realistic training environments, building games which deliver high

levels of visual and functional realism is a complex, time consuming and expensive process.

Therefore, commercial game engines, which provide a development environment and resources to

more rapidly create high-fidelity virtual worlds, are increasingly used for serious as well as for

entertainment applications. Towards this intention, the authors propose a new framework for the

selection of game engines for serious applications and sets out five elements for analysis of engines

in order to create a benchmarking approach to the validation of game engine selection. Selection

criteria for game engines and the choice of platform for Serious Games are substantially different

from entertainment games, as Serious Games have very different objectives, emphases and

technical requirements. In particular, the convergence of training simulators with serious games,

made possible by increasing hardware rendering capacity is enabling the creation of high-fidelity

serious games, which challenge existing instructional approaches. This paper overviews several

game engines that are suitable for high-fidelity serious games, using the proposed framework.

Keywords: High Fidelity, Serious Games, Game Engines, Visualization.

__

Introduction

The potential for using game engines for

serious games has been recognized for years

(Seung Seok Noh 2006). In 1997, the

National Research Council cited some of the

objectives of multi-player games for military

simulation: “The underlying technologies

that support these objectives address similar

requirements: networking, low-cost graphics

hardware, human modeling, and computer

generated characters.” (National Research

Council 1997). The vision of using games for

simulation has been realized in a number of

military training- oriented games,including

America’ s Army and Full Spectrum

Command (Wray 2004). As a result, there has

been a trend towards the development of

more complex, serious games which are

informed by both pedagogic and game

elements. Whilst it is true that the technical

state-of-the-art in serious games mirrors that

of leisure games (Anderson 2009), the

technical requirements of serious games are

International Journal of Interactive Worlds 2

frequently more diverse and wide-ranging

than their entertainment counterparts.

Serious game developers frequently resort to

bespoke and proprietary development due to

their unique requirements, such as the use of

Blitz Games’ in-house engine for developing

the serious game: Triage Trainer (Jarvis

2009). Such examples of bespoke

development and the limited use of off-the-

shelf game engines for serious applications

highlight the difficulties that exist for engine

designers seeking to understand and

comprehensively support the needs of

instructional design.

The convergence of high fidelity simulators

with serious games represents an area with

increasing potential to fulfil cognitive

learning requirements with a high degree of

efficacy, whilst leveraging the advantages of

game-based content to motivate and engage

users. Modern games are frequently

developed on game engines, which can be

deployed on personal computers, game

consoles, pocket PCs and mobile devices. The

popularity of video games, especially among

younger people, results in them frequently

being perceived as an ideal medium for

instructional programmes aimed at hard-to-

reach demographics (Malone 1987);

however, studies have also shown this

demographic responds poorly to low-fidelity

games (de Freitas 2009).

The value and impact of realism on learning

purely through simulation is well-

documented (de Freitas 2006; Jarvis 2009).

However, when game elements are

introduced, although they have been shown

to improve learning in comparison to pure

simulation (Mautone 2008), the relationship

between simulation and game is less simple

to define. Visual fidelity, whilst being a

common objective in simulations, is

considerably less valued in gaming; Jarvis

and de Freitas (Jarvis 2009) demonstrate

excessive fidelity to be detrimental to

learning and the approaches put forward by

learning theorists such as Vygotsky avoid

creating a facsimile of reality in favour of

internally-consistent abstractions. Visual

fidelity is best linked to learning

requirements; more is not necessarily always

better, particularly from a cognitivist

perspective (cognitive overload (Warburton

2008)); therefore, the ability to constrain and

control fidelity can be seen as desirable,

particularly with respect to composable

content.

Hence, whilst visual fidelity is one

component of an immersive environment,

serious games often seek to use abstraction

or non-realistic visual elements. Knez and

Niedenthal (Knez 2008) present an

interesting factor for consideration through a

study linking changes in the affect of users to

lighting within a virtual scene. Given that the

affect of learners has a noted impact on the

efficacy of learning (Bryan 1996), the

capacity of a game engine to handle

sophisticated lighting approaches is of

concern. An increasing recent trend in game

engines to transfer lighting calculations to

the GPU has led to a significant variation

between engines in their support for shader

models and in turn their capacity to perform

sophisticated light and shading effects.

In the next section, the researchers consider

in more depth the motivation behind the

creation of high-fidelity serious games.

Through an analysis of background

literature, the researchers are able to

highlight common pedagogic elements and

hence recognise the subsequent technical

implications.

Background

As seen before, the technical state-of-the-art

in serious games mirrors that of leisure

games (Anderson 2009), however, the

technical requirements of serious games are

frequently more diverse and wide ranging

than their entertainment counterparts.

Serious game developers frequently resort to

bespoke and proprietary development due to

their unique requirements, such as (Playgen

2010) and (PIXELearning 2010), and

difficulties exist for game engine developers

3 International Journal of Interactive Worlds

in accurately understanding and supporting

the needs of instructional design.

Although many serious games have limited

visual interactivity, immersion and fidelity,

there is an increasing motivation to create

serious games that intend to support

situative (social and peer-driven) and

experiential pedagogies, partially because

behaviourist approaches have been shown to

be limited (e.g. people learn to play the game,

not address learning requirements), whilst

cognitive approaches struggle to impart

deeper learning in the areas of affect and

motivation (Egenfeldt-Nielsen 2005).

Furthermore, recent work by Mautone

(Mautone 2008) demonstrates enhanced

learning when introducing game elements to

a standard flight simulator. Consequently, re-

evaluation of simulator approaches to

incorporate game and game-like elements

places an increasing demand for serious

game developers to deliver high-fidelity

solutions. Given this motivation to create

immersive, high fidelity serious games, an

obvious development choice is to utilise

game engines, which provide ‘out of the box’

support for state-of-the-art desktop GPU

rendering and physics. In the remainder of

this section, the researchers discuss a range

of key considerations when selecting the

technology behind serious games, supporting

effective pedagogy, the learner and their

context.

Fritch (Fritsch 2004) et al compared

different games engines for large-scale

visualization of outdoor environments

focusing mainly on the issues of

composability. Similarly, Shiratuddin

compared various game engines for

visualizing large architectural scenes mainly

focusing on accessibility and the availability

of game engines (Shiratuddin 2007).

Following the analysis of all these potential

factors, the methodology used here is

defined to include areas, such as audiovisual

fidelity, functional fidelity, composability,

availability and accessibility, networking and

heterogeneity.

Visual Fidelity

High-fidelity in serious games is typically

seen as desirable in situations where there is

a need to transfer process knowledge learnt

within the game to real world situations; and

thus the closer the similarity between real

and virtual space, the more effective the

learning transfer is likely to be. Although a

link between learning transfer and

verisimilitude of learning activity has been

observed particularly in training contexts

(Park 2005; Janet L. Grady 2008; Davidovitch

2009)), this link does not necessarily hold

true in all game-based learning scenarios;

Jarvis and de Freitas (Jarvis 2009) suggest

that the level of fidelity required must be

mapped onto learning objectives.

Furthermore, an over-emphasis upon visual

fidelity can mask the complexities of

producing verifiable and replicable learning

activities and experiences.

The need to engage the learner, and

specifically, immersion through high-fidelity

content is one such mechanism through

which such engagement can be achieved. The

concept of immersion is a common one in

serious games, although the components that

constitute an immersive experience can be

more difficult to define. The capacity to

immerse learners is a significant

consideration, although the means for

achieving this immersion can be diverse from

highly visual content to less technical

approaches such as narrative immersion

(Mott 2006). Robertson et al (Robertson

1997) looked specifically at the relationship

between user and standard desktop PC as an

interface for virtual reality, and compared it

to head-tracked systems. Robertson claims

“immersion should not be equated with the

use of head-mounted displays: mental and

emotional immersion does take place,

independent of visual or perceptual

immersion”, an opinion reinforced by

Csikszentmihalyi and Kubey

(Csikszentmihalyi 1981). Thus, a further

discretisation of the concept of immersion

between psychological and perceptual levels

is identified. The role consistently is one of

International Journal of Interactive Worlds 4

‘drawing in’ the user, such that they

experience a perceptual shift between simply

viewing the screen and existing within the

environment. Breaks in consistency, such as

those induced by low frame rate or

discontinuities in world content are shown to

have a significant negative impact on

immersion (Csikszentmihalyi 1981).

With respect to all three of these aspects,

there are a number of dimensions in which

fidelity must be considered. At a high level,

there are many aspects of a game that can be

represented with differing levels of fidelity;

the narrative, the depth of visual and

auditory content, the interaction medium

and the behaviour of characters and objects

within the game world. Whilst all these

concerns must be reflected upon when

designing a serious game, in terms of engine

selection, a clear distinction exists between

affordances for audiovisual and functional

fidelity. It is possible to engineer a world,

which appears realistic but does not behave

in a realistic fashion. Although increasing

audiovisual fidelity often implies increased

functional fidelity, as a virtual room fills out

with furniture to become more visually

realistic, players start expecting furniture to

function as it would in the real world. For

example, placing a virtual telephone on top of

a desk can bring with it a host of potential

questions from users expecting to be able to

dial out.

The concept of immersion is a common one

in serious games, although its definition, and

specifically, the components that create an

immersive experience can be more difficult

to define. The capacity to immerse learners is

a significant consideration, although the

means for achieving this immersion can be

diverse: from visual fidelity to functional

fidelity as well as less technical approaches

such as narrative immersion. A simple out-of-

place texture or inappropriate sound can

have catastrophic effects for believability, as

metrics of immersion such as the

performance indications and cognitive

surveys applied by Pausch et al. (Pausch

1997).

Accessibility

Unlike leisure games, target demographics

for serious games are often non-game

players, with little interest in technology or

knowledge of user interfaces. Furthermore,

the developers of serious games may be

instructional designers wishing to explore a

new medium, rather than traditional game

developers seeking to develop instructional

content. Therefore, the capacity of the engine

to support both developers and users with

limited expertise is of relevance. Previous

Research (Jarvis 2009) has shown that

conventional keyboard and mouse

interaction in a world with multiple degrees

of freedom can prove initially overwhelming

for non-gamers. As such, serious games can

often require interfaces that deviate from

those common to entertainment games, and

seek to simplify interactions based upon an

understanding of learning requirements.

Heterogeneity

Zyda identified as early as 1995 (Zyda, 1995)

three fundamental challenges in multiuser

virtual environment design, which he defines

as composability, scalability and

heterogeneity. These remain substantial

challenges within current virtual

environment research. With respect to

serious games, heterogeneity is of particular

concern, since target demographics are

frequently ‘non-gamer’, and thus platforms

capable of deployment across a wide range of

hardware and software platforms are

significantly advantageous.

Composability

Serious games often seek to model real world

locales and situations, or adapt real world

data for use in games with minimal

development overheads. Composability in

this context is used to describe both the

reusability of content created within a game

engine, and also its capability to import and

use data from common or proprietary

sources.

5 International Journal of Interactive Worlds

Technology evolution often requires the

recreation of game content in ever-increasing

levels of visual and functional fidelity.. If the

scene consists of many high fidelity objects at

various distances, it may be possible to adopt

a low level of-detail approach (Engel) and

use less complex geometry, or even dummy

objects (Akenine-Moller T. 2008), to

approximate distant objects (Sander 2006).

Alternatively, if only a small sub-section of

the world or object is in sight at any one time,

it may be possible to hold only these visible

parts in memory and then replace them as

new parts come into view by applying some

form of spatial partitioning (Crassin 2009).

Another issue that the designer/developer

has to consider arises when attempting to

import a high-fidelity model into a game

engine, which may not support the geometry

or texture formats within the model, or

require specific optimisations such as

polygon reduction to be rendered in real-

time.

Two principal solutions exist: the first is to

address the problems on a large-scale

through an algorithmic approach that seeks

to provide automated conversion between

formats and import the model as a whole into

the game engine. The second is to select

specific components of the model for

conversion and progressively convert and

integrate them into the game engine by hand.

However, algorithms intending to support

such an approach face a number of

challenges: decomposition of a mesh into

multiple levels-of-detail is difficult to

optimise since the perceived visual fidelity of

the resultant lower-resolution meshes is

linked to the perception characteristics of the

user, and hence a solution is not only

mathematically complex, but must also

consider how humans perceive and integrate

features of a three-dimensional scene

(Treisman 1980). Therefore, developers are

commonly forced to select specific

components of the model for conversion, and

progressively convert and integrate them

into the game engine by hand, a task

necessary when conversion tools are

inadequate or the original data format has

insufficient information for the game engine;

often the case when models are developed

without adequate information on materials,

textures, bump maps or levels-of-detail.

Secondly, occlusion culling may only be

performed if information on the visibility of

polygons is computationally less expensive to

obtain than rendering them. Early game

engines such as the Quake engine seeks to

achieve visibility data prior to run time

through pre-processing a visibility matrix

and binary partitioning of virtual space.

Thirdly, mesh decomposition must be

performed in concert with analysis and

scaling of texture level of detail to provide a

satisfactory visual outcome.

Networking

Multi-user elements are often specified at

early-stage designs of serious games, since

they often affect the nature of the game and

its role within a training programme as a

whole. User interaction within the game itself

is often used to address the difficulties in

automating the behaviour of non-player

characters in a believable and coherent

fashion. In this context, instructors play the

role of virtual characters in order to converse

and interact with learners in a realistic and

adaptive manner. Whilst this can be an

effective way of creating believable virtual

scenarios, it suffers from limited scalability

due to the availability of instructors and

practical limits on pupil-tutor ratios.

Support for larger-scale communities and

social elements are gaining increasing

recognition within the leisure gaming

community as a mechanism for increasing

uptake and long-term play. As an example,

the recent Guitar Hero [35] game wraps a

cognitively simple task within a socio-

culturally motivating setting, and has

consequently proved to be highly successful

commercially. Within serious games, social

elements often take the form of online

communities, and the convergence of games

with social networking technologies remains

an area of interest.

International Journal of Interactive Worlds 6

Summary of Requirements for Serious

Games

As seen in section 0, the key elements are

fidelity, consistency and support for tools for

creating immersion and flow. Fidelity can be

further subdivided into visual and functional

fidelity. Consistency relates to technical

features in this area including the need to

load between areas or stream geometry, or

whether the engine is standalone or web

based. Finally, corresponding features for

tools creating immersion and flow include

game scripting tools, especially when

narrative is a non-linearity (i.e. implementing

some form of artificial intelligence or

artificial life). This ties in with immersion,

but the term immersion within the

framework is avoided due to the current lack

of consensus on its definition (Slater 1993),

(Slater 2003). Instead the researchers focus

on the elements that contribute to immersive

experiences.

Additional technical elements include

heterogeneity (on which platforms can the

engine be deployed ; what hardware

requirements; can it scale automatically),

accessibility (support for non-standard

interfaces and devices; as well as support for

standardised interfaces e.g. WASD) and

multiuser support, beneficial since in the

absence of sophisticated AI, human

instructors often play a role in virtual

learning experiences, and similarly socio-

cultural elements can be key motivators as

mentioned above.

Overview of Modern Game Engines

Modern game engines combine several

technologies from the area of computer

science such as: graphics, artificial

intelligence, network programming,

languages and algorithms. Modern computer

game engines are robust and extensively

tested (Lepouras G. 2005), in terms of the

usability and performance, work on off-the-

shelf systems (Robillard G. 2003) and can be

easily disseminated, for example via online

communities (Burkhard C. Wünsche 2005). A

game engine is any tool or a collection of

tools that creates an abstraction of hardware,

and/or software, for the purpose of

simplifying common game development

tasks. Many computer game developers

support modification of their game

environments by releasing level editors, for

example to modify the game environment

and tools to edit the game behaviour. This

allows the reuse of the underlining game

engine technology, including 3D rendering,

2D drawing, sound, user input and world

physics/dynamics (Lewis M. 2002). For

example, users can create new levels, maps

and characters, adding them to the game,

known as partial conversion or they can

create entirely new games by altering the

game source engine, known as total

conversion (Trenholme 2008). Modern game

engines have a modular structure, so that

they can be reused into different games

(Jacobson J. 2003; Trenholme 2008). Analysis

of a range of current game engines suggests

the following modules are common: the

Graphics Module, the Physics Module, the

Collision Detection Module, the I/O Module,

Sound Module, the AI Module and the

Network Module. The graphics module is

responsible for the generation of the 2D/3D

graphics in the environment, including

libraries for texture mapping, shadowing,

lighting and shader effects. The Physics

Module ensures that objects behave

according to physical laws, for example

objects fall under gravity and glass breaks.

The Collision Detection Module is used to

ensure that certain actions will occur when

two objects collide. Furthermore, the

input/output module is responsible for the

input and output device which can be

integrated into the 3D engine.

One of the most important elements of the

creation of serious games is the visual

representation of these environments.

Although serious games have design goals

that are different from those of pure

entertainment video games, they can still

make use of the wide variety of graphical

features and effects that have been

developed in recent years. Most game

7 International Journal of Interactive Worlds

engines provide support for texture mapping,

shadowing, lighting and shader effects in

their graphics model. Additionally, modern

engines frequently include a selection of such

effects, which can include more traditional

image processing, such as colour correction,

film-grain, glow or edge-enhancement, as

well as techniques that require additional

scene information, such as depth of field and

motion blur (Akenine-Moller T. 2008).

An Artificial Intelligence module, often used

to create objects or "Non Playing Characters"

(NPCs), is able to interact "intelligently" with

the player. An important aspect in the

creation of realistic scenes is to create in the

game environment intelligent behaviours for

the inhabitants of the virtual world, which is

achieved using Artificial Intelligence (AI)

techniques. However, it is important to

understand that when the researchers refer

to the AI of virtual entities in game engines, it

is not truly AI – at least not in the

conventional sense (McCarthy 2007). The

techniques applied to computer games are

usually a mixture of AI-related methods

whose main concern is the creation of a

believable illusion of intelligence (Scott

2002), e.g. the behaviour of virtual entities

only needs to be believable enough to convey

the presence of intelligence and to immerse

the human participant in the virtual world.

The Network Module is responsible for the

multiplayer implementation of the game. As a

result, players could cooperate in exploring

an area or exchange opinions about certain

aspects of a virtual environment, while being

located in different areas of the world.

The IO module provides support for different

input/output devices. This module provides

tools that allow the user to communicate and

interact with the game environment. Most

game engines provide support for standard

input devices such as, joysticks, gamepads

and keyboard. Technological improvements

and cost reduction in computing power,

display and sensor technology have resulted

in a widespread use of 3D Input Devices

(Fröhlich 2000; Petridis 2005; Mourkoussis

2006). Devices, such as the Nintendo Wii and

Playstation controller provide 6 Degrees Of

Freedom interaction that could enhance the

user interaction with the environment and

increase the immersion of the user.

With such a broad definition, what is referred

to as a game engine can vary among

developers and where a game engine ends

and a game begins is not always a clearly

defined line (Trenholme 2008). Game

engines should be distinguished from

graphics engines that come only with

rendering capabilities, and also from

Software Developer Kits (SDKs) that aid

game development. The reason for this

differentiation is that graphics engines

impose limitations as to what and how things

can be included in a game, whilst SDKs are

much more flexible but with narrower focus.

For example, Gamebryo is a very flexible

proprietary renderer but has no collision

detection or physics capabilities, unlike

Havoc, which is solely a physics engine.

Similar middleware include Criterion’s

Renderware and Speedtree.

A Framework for Game Engine Selection

In short, key elements are defined arising

from the background as fidelity subdivided

into visual and functional fidelity,

consistency, (technical features in this area

would include need to load between areas or

stream geometry, whether the engine is

standalone or web based – basically things

that impact on immersion), and support for

other tools for creating immersion and flow

such as narrative (corresponding features

include: game scripting tools), particularly

narrative which supports non-linearity

(artificial intelligence, artificial life). This ties

into immersion; the researchers deliberately

avoid “immersion” and the factors that affect

immersion within the framework and

because it is decided to focus on the elements

that contribute to immersive experiences.

Additional technical elements include

heterogeneity (on which platforms can the

engine be deployed ; what hardware

requirements; can it scale automatically),

International Journal of Interactive Worlds 8

accessibility (support for non-standard

interfaces and devices; as well as support for

standardised interfaces (e.g. WASD) and

multiuser support, beneficial since in the

absence of sophisticated AI, human

instructors often play a role in virtual

learning experiences, and similarly socio-

cultural elements can be key motivators as

mentioned above.

Table 1: Framework for Comparing Engines in SG

Audiovisual Fidelity

Rendering

Animation

Sound

Functional Fidelity Scripting

Supported AI Techniques

Physics

Composability Import/ Export Content

Developer Toolkits

Accessibility Learning Curve

Documentation and Support

Licensing

Cost

Networking Client Server/ Peer–to- peer

Heterogeneity Multiplatform Support

Current Game Engines Compared Using the

Framework

At the current time, the researchers have

identified over 100 games engines available

on the market (WikiPedia 2010). It was

decided to compare a subset of this number

with the framework in order to gain some

baseline data for validating the model. The

rationale for the selection of these games

engines over others is to meet several

identified criteria including: wide usage of

engine, availability, modularity and

innovative features.

The first game engine under comparative

analysis here is the CryENGINE 3. The engine

is available for the PC, PS3 and Xbox360.

CryENGINE 3 supports development in

Microsoft Direct X 9,10 and 11.

9 International Journal of Interactive Worlds

Figure 1: Screenshot from the CryENGINE3

The CryENGINE supports a number of

features that are useful for creating

immersive and realistic serious games, such

as real-time world editor, bump mapping,

dynamic lights, an integrated multi-threaded

physics engine, shaders, shadow support,

multi-core support, character animation

system, pathfinding, dynamic sounds and

interactive music. The engine supports all

currently available hardware and it is

updated with further hardware support

when it becomes available.

The second engine under comparison is

Valve’s Source Engine. Source Engine

provides a number of features such as

character animation, advanced AI, real-world

physics, shader-based rendering and a highly

extensible development environment. The

level editor that is used to produce levels for

games using the Source Engine is the Valve

Hammer Editor, commonly referred to as

Hammer. The editor uses brushes, called

primitives, to construct a level. The engine

also supports particle effects, volumetric

smoke and environmental effects such as fog

or rain. Typical games that use the Source

Engine are Half Life 2(Valve 2010), Dark

Messiah of Might and Magic (Ubisoft 2010).

International Journal of Interactive Worlds 10

Figure 2: Screenshot of Half Life 2

The third engine is the Unreal Engine 3

(Games 2009), which has a complete game

development methodology for next-

generation consoles and DirectX9-equipped

PC's, providing the vast range of core

technologies, content creation tools and

support infrastructure required by top game

developers. The engine supports high

performance rendering, advanced animation

and high-quality dynamic lighting. Supported

effects include a particle system for particles

composed of sprites, meshes, lines and

beams. The particle system supports various

lifetime, texture, movement and collision

options. All particle features can be

manipulated in real-time in the editor. The

texturing features of the engine include a

material system that supports alpha-

blending, e.g. transparency and blending of

multiple layers of textures.

11 International Journal of Interactive Worlds

Figure 3: Screenshot of Unreal Tournament 3

The final engine under comparison is the

Unity engine (Unity 2009), which is a game

development tool that allows the developer

to create games for different platforms, such

as the iPhone, Nintendo Wii, Mac and PC.

CryEngine 3, Unity, Valve’s Source Engine

and the Unreal engines provide high-fidelity

standards and provide support for all the

latest technologies of computer graphics as

can be seen from Table 2. Using these

features such as texturing, lighting, shadows

and special effects, the developer has the

potential to deliver the same perceptual

quality, as the user was present in the real

scene. Thus, the player can feel actually

present in the real scene being depicted.

International Journal of Interactive Worlds 12

Table 2: Audiovisual Fidelity

 CryEngine Source Engine Unreal Unity

R
e

n
d

e
ri

n
g

T
e

x
tu

ri
n

g

Basic, Multi-

texturing, Bump

mapping

Basic, Multi-

texturing, Bump

mapping

Basic, Multi-

texturing, Bump

mapping,

Procedural

Basic,

Bumpmapping,

Procedural

L
ig

h
ti

n
g

Per-vertex, Per-

pixel,

Lightmapping,

Gloss

map,Anisotropic

Per-vertex, Per-

pixel,

Lightmapping,

Radiosity, Gloss

maps

Per-vertex, Per-

pixel, Gloss/

Specular Mapping

Light mapping

Per-vertex, Per

Pixel

S
h

a
d

o

w
s

Shadow Volume Shadow Mapping, Shadow Mapping,

Projected, Shadow

Volume

Projected planar

S
p

e
ci

a
l

E
ff

e
ct

s

Environmental

Mapping

Environmental

Mapping

Environmental

Mapping

Environmental

Mapping

Particle Systems, Particle Systems Particle Systems Particle Systems

Bill Boarding Bill Boarding Bill Boarding Bill Boarding

Lens Flares Lens Flares Lens Flares Lens Flares

A
n

im
a

ti
o

n

 Forward

Kinematics,

Keyframe

Animation,

Skeletal

Animation,

Morphing,

Animation

Blending

Skeletal

Animation,

Morphing, Facial

Animation,

Animation

Blending

Forward

Kinematics,

Keyframe

Animation,

Skeletal

Animation,

Morphing,

Animation

Blending

Forward

Kinematics

Keyframe

Animation,

Skeletal Animation

Morphing,

Animation

Blending

S
o

u
n

d

 2D Sound, 3D

Sound

2D Sound, 3D

Sound

2D Sound, 3D

Sound, Streaming

Sound

2D Sound, 3D

Sound, Streaming

Sound:

Another major challenge in the selection of

game engines for serious games is functional

fidelity. Functional fidelity is closely related

to the AI, physics and scripting. All the

selected game engines provide support for

various AI techniques, such as collision

detection and path finding. Additionally, all

game engines have integrated their own

physics engines, and furthermore, each of the

selected game engines has support for

scripting languages.

13 International Journal of Interactive Worlds

Table 3: Functional Fidelity

 CryEngine Source Unre

al

Unity

Scripting Script Yes Yes Yes Yes

Object Model Yes No No No

Supported AI

Techniques

Collision Detection Yes Yes Yes Yes

Path Finding Yes No Yes Yes

Decision Making Yes No Yes Yes

Physics Basic Physics Yes Yes Yes Yes

rigid body Yes Yes Yes Yes

vehicle dynamics Yes Yes Yes Yes

The reusability of content created within a

game engine and the capability of importing

and using data from common sources should

be considered before selecting a game

engine. As budgets for creating serious

games are usually very limited compared to

commercial entertainment games, this

becomes an especially important

aspect(Protopsaltis 2010; Protopsaltis 2011).

Additionally, in serious games, the

developers need to have access to the SDK,

GDK in order to add different peripheral

devices or connect the game engine with

learning management systems or with other

software APIs. However, from the

comparison of the game engines, the

researchers identified that importing a 3D

model from CAD software into the supported

format of the game engine is a major issue

and requires the developer to select specific

components of the model for conversion and

progressively convert and integrate them

into the game engine by hand. Once this

obstacle has been overcome, the game

engines can create high-fidelity indoor and

outdoor scenes occupied with non-player

characters in real-time. Table 4 compares the

selected engines according to the suggested

categories.

Table 4: Composability

 Metrics CryEngine Source Unreal Unity

Import/

Export

Content

CAD Platforms

supported

3ds max,

maya

3ds max,

maya

3ds max,

maya,

3ds max,

maya,

Import Export

Limitations

No No Yes No

Content

Availability

Small Large Large Medium

Developer

Toolkits

SDK/GDK Yes Yes Yes No

International Journal of Interactive Worlds 14

Another major challenge in the selection of

game engines for serious games is

accessibility; that is, how easy it is to retrieve

supporting information about the game

engine (see Table 5). CryENGINE provides all

the necessary development tools that can be

accessed from games that use the engine (i.e.

Crysis, FarCry). The engine offers the

Sandbox editor, which allows the user to edit

levels in real-time. Partial source code and

documentation is included with a freely

downloadable SDK. Documentations for the

Unreal Engine are available through the

Epic’s Unreal Developer Network (UDN)

(Epic Games 2010), which is the official

support site for licensees and mod

(modifications) developers, providing

technical documentation, as well as tutorials,

for the Unreal engine and UnrealEd. There

are also a number of community websites

that provide discussion forums and tutorials

(Planet Unreal 2010; Unreal Wiki 2010).

Documentation for the Source SDK is

provided on the Valve Developer Community

wiki (Valve's Wiki 2010), which provides the

most comprehensive guide on using the

Source Engine. The Source SDK contains all

the necessary tools in order to create a mod

and develop game content. The Source SDK

also provides a Create a Mod option, which

copies the necessary source code and

resources to a working directory. A large

number of other websites provide their own

discussion forums and tutorials, which range

from general introductions to the Source SDK

tools to more specific tasks (Interpolers.net ;

EditLife 2010).

Table 5: Accesibility

 Metrics CryEngine Source Unreal Unity

Learning

Curve

 Medium Medium Medium Medium

Docs and

Support

Docs

Quality

SDK

includes

CryENGINE

modding

guide and

FAQ, as well

as guides

for other

tools.

Official

documentat

ion

available on

Valve

Developer

Community

Subset of

official

documentat

ion and

tutorials

available on

the Unreal

Developer

Network

(UDN)

Docs and

Tutorials

available

from the

official

website

Technica

l Support

Yes Yes Yes Yes

Commun

ity

Support

Yes Yes Yes Yes

Licensing Game

source code

available,

comes with

CryENGINE

MOD SDK.

Game

source code

available,

comes with

Source SDK

UnrealScrip

t game

source code

available

from UDN.

Indie and

Pro version

available.

The next step in the selection process of the game engine is to focus on the heterogeneity of the

engines and their network support (see Table 6). All the selected engines support client-server

architectures. However, if the serious game is going to support a large virtual world with hundreds

of users, a network supported layer has to be built.

15 International Journal of Interactive Worlds

Table 6: Networking and Heterogeneity

 CryEngine Source Unreal Unity

N
e

tw
o

r

k
in

g

Client-

Server,

Yes Yes Yes Yes

Peer-to-

Peer

No No No No

H
e

t

e
ro

Multiplatfo

rm

Yes Yes Yes Yes

Our analysis of four leading entertainment

game engines demonstrates that whilst all

four provide a sound basis for serious game

development, none give specific regard to

serious applications. Unsurprisingly perhaps,

as none of these games engines have been

developed with serious applications in mind;

which in turn may have something to do with

the relatively small budgets often found in

serious game development. Rather, the

emphasis is upon the designer to integrate

technology with instructional design, and to

this end, the game engine plays the role of an

implementation tool, rather than fully

supporting the process of serious game

development. Future viability of game

engines for serious applications will depend

on how capable they become at supporting

the concepts and core dissimilarities

between serious and leisure applications,

which includes supporting participation and

learner involvement in the development

process, integration into intelligent tutoring

systems (Dunwell 2011) and support for

metadata (Hendrix 2012) in the form of

learning objects and repositories.

Furthermore, user interactions with serious

applications are often diverse and reflected

in a wide range of levels of user expertise and

expectation, and therefore support for

interfaces outside of those common to

entertainment games is advantageous.

Conclusions and Future Work

The creation of a serious game is a complex

engineering project that requires technical

expertise, as well as a careful balance of game

design principles with instructional content.

Similarly, the development of generic engines

which underpin serious and leisure games is

a complicated process that requires time,

resources and teamwork. As serious games

become more complex, so do the engineering

challenges that arise during the development

of the game. Hence, the early-stage selection

of the optimal engine for development is

crucial. This paper presents a selection

framework, allowing the developer to select

the ideal engine based on the technical

requirements of the serious game.

This is the first framework for serious game

engine selection currently proposed and

tested, and is intended as a starting point for

ongoing benchmarking and metrics for

supporting serious game engine selection.

However, whilst our framework relates

overarching technical requirements to a

range of modern engines, more research,

testing and validation must still be done to

relate learning requirements and

instructional design principles to these

technical features. Ultimately, the design and

implementation of effective serious games

must be grounded in pedagogy, as well as

technology, and therefore future work should

address the many issues surrounding the

equation of learning requirements to these

identified technical features. Towards this

end, future studies will focus upon the

analysis of the impact of the various engines

and their functionalities on targeted learner

groups.

Finally, whilst the researchers sought to

identify and evaluate the most widespread

subset of game engines within the context of

our framework, given the rapid evolution of

technology in this area, comparison of

International Journal of Interactive Worlds 16

additional and emerging game engines may

also offer opportunities to further refine and

validate the framework. Thus, future work

will build upon and further test game engines

using this framework method of validation.

References

Anderson, E. F., McLoughlin, L., Liarokapis, F.,

Peters, C., Petridis, P. & de Freitas, S. (2009).

"Serious Games in Cultural Heritage," 10th

VAST International Symposium on Virtual

Reality, Archaeology and Cultural Heritage

(VAST '09), VAST-STAR, Short and Project

Proceedings, Eurographics, Malta, 22-25.

Bryan, T., Mathur, S. & Sullivan, K. (1996).

"The Impact of Positive Mood on Learning,"

Learning Disability Quarterly 19(3): 153-162.

Burkhard C. Wünsche, Blazej Kot, Andrew

Gits, Robert Amor & John Hosking. (2005).

"A Framework for Game Engine Based

Visualisations," Proceedings of Image and

Vision Computing New Zealand.

Crassin, C., Neyret, F., Lefebvre, S. &

Eisemann, E. (2009). "Gigavoxels: Ray-

Guided Streaming for Efficient and Detailed

Voxel Rendering," I3D ’09:Proceedings of the

2009 symposium on Interactive 3D graphics

and games (2009). 9: 15-22.

Csikszentmihalyi, M. & Kubey, R. (1981).

"Television and the Rest of Life: A Systematic

Comparison of Subjective Experience," Public

Opinion Quarterly 45(3): 17-328.

Davidovitch, L., Parush, A. & Shtub, A. (2009).

"The Impact of Functional Fidelity in

Simulator-based Learning of Project

Management," International Journal of

Engineering Education 25(2): 333-340.

De Freitas, S. & Jarvis, S. (2006). "A

Framework for Developing Serious Games to

Meet Learner Needs," The

Interservice/Industry Training, Simulation

and Education Conference. Florida,USA.

De Freitas, S. & Neumann, T. (2009). "The Use

of ‘Exploratory Learning’ for Supporting

Immersive Learning in Virtual

Environments," Computers and Education

52(2): 343-352.

Dunwell, I., Petridis, P., Arnab, S.,

Protopsaltis, A., Hendrix, M. & de Freitas, S.

(2011). "Blended Game-Based Learning

Environments: Extending a Serious Game

into a Learning Content Management

System," ALICE 2011: International

Workshop on Adaptive Learning via

Interactive, Collaborative and Emotional

approaches, at INCOS 2011: Third

International Conference on Networking and

Collaborative Systems

EditLife. (2010). Online Resources for Half

Life, Retrieved 21/06/2010, from

http://www.editlife.net/

Egenfeldt-Nielsen, S. (2005). "Beyond

Edutainment: Exploring the Educational

Potential of Computer Games," Phd thesis, IT-

University Copenhagen.

Engel, W., Hoxley, J., Kornmann, R. & Suni

Zink J. Programming Vertex, Geometry, and

Pixel Shaders, line book available at:

http://wiki.gamedev.net/, 2008. 9, 11."

Epic Games. (2010). UDN Network

Retrieved 21/06/2010, from

http://udn.epicgames.com/Main/WebHome.

html.

Fritsch, D. & Kada, M. (2004). "Visualization

Using Game Engines," ISPRS commission 5.

Istanbul, Turkey,: 621-625.

Fröhlich, B., Plate, J., Wind, J., Wesche, G. &

Gobel, M. (2000). "Cubic-Mouse-Based

Interaction in Virtual Environments," IEEE

Computer Graphics and Applications 20(4):

12-15.

Games, E. (2009). Retrieved 06/11/2009,

from http://www.unrealtechnology.com/.

17 International Journal of Interactive Worlds

Hendrix, M., Protopsaltis, A., Rolland, C.,

Dunwell, I., de Freitas, S., Arnab, S., Petridis,

P. & Llanas, J. (2012). "Defining a Metadata

Schema for Serious Games as Learning

Objects," International Conference on Mobile,

Hybrid, and On-line Learning (eL&mL) IARIA.

Interpolers.net. Resources Available for

Source Engine. Retrieved 21/05/2010, from

http://www.interlopers.net/.

Jacobson J. (2003). "Using ‘‘CaveUT’’ to Build

Immersive Displays with the Unreal

Tournament Engine and a PC Cluster,"ACM

symposium on interactive 3D graphics, ACM

Press.

Janet L. Grady, Rosemary G. Kehrer, Carole E.

Trusty, Eileen B. Entin, Elliot E. Entin & Tad

T. Brunye (2008). "Learning Nursing

Procedures: The Influence of Simulator

Fidelity and Student Gender on Teaching

Effectiveness," Journal of Nursing Education

47(9).

Jarvis, S. & de Freitas, S. (2009). "Evaluation

of an Immersive Learning Programme to

support Triage Training," Proceedings of the

1st IEEE International Conference in Games

and Virtual Worlds for Serious Applications,

IEEE Computer Society,. Coventry,UK: 117-

122.

Knez, I., & Niedenthal, S. (2008). "Lighting in

Digital Game Worlds: Effects on Affect and

Play Performanc," Cyberpsychology &

Behavior(11): 129-137.

Lepouras, G. & Vassilakis, C. (2005). "Virtual

Museums for all: Employing Game

Technology for Edutainment," Virtual Real. 8:

96-106.

Lewis M. & Jacobson, J. (2002). "Game

Engines in Scientific Research," Commun ACM

45(1): 27-31.

Malone, T. W. & Lepper, M. R. (1987).

"Making learning Fun:A Taxonomy of

Intrinsic Motivations for Learning," In

Aptitude, learning and instruction: III.

Conative and affective process analyses. F. J.

Snow R. E. Erlbaum: 223-253.

Mautone, T., Spiker, V. A. & Karp, M. R.

(2008). "Using Serious Game Technology to

Improve Aircrew Training," In Proc. of

I/ITSEC 2008.

McCarthy, J. (2007). "What is Artificial

Intelligence," Available At http://www-

formal.stanford.edu/jmc/whatisai/whatisai.

html

Moller, T. A., Haines, E. & Hoffman, N. (2008).

Real-Time Rendering, A. K. Peters.

Mott, B. W., McQuiggan, S. W., Lee, S., Lee, S. Y.

& Lester, J. C. (2006). "Narrative-Centered

Environments for Guided Exploratory

Learning," Proceedings of the Agent Based

Systems for Human Learning Workshop at

the 5th International Joint Conference on

Autonomous Agents and Multiagent Systems

(ABSHL-2006). Hakodate, Japan.

Mourkoussis, N., Mania, K., Petridis, P., White,

M., Rivera, F. M., Pletinckx, D., Troscianko, T.

& Hawkes, R. (2006). "An Analysis of the

Effect of Technological Fidelity on Perceptual

Fidelity," To appear in proceedings of the IEA

2006 (International Ergonomics

Association), 16th World Congress on

Ergonomics, The Hague, Netherlands.

National Research Council (1997). "Modeling

and Simulation: Linking Entertainment &

Defense," National Academy Press.

Park, G. D., Allen, R. Wade, Rosenthal,

Theodore J. & Fiorentino Dary. (2005).

"Training Effectiveness: How Does Driving

Simulator Fidelity Influence Driver

Performance?," Human Factors and

Ergonomics Society Annual Meeting

Proceedings, Training. 5: 2201-2205.

Pausch, R., Proffitt, D., & Williams, G. (1997).

"Quantifying Immersion in Virtual Reality,"

Proceedings of the 24th annual conference

on Computer graphics and interactive

techniques, ACM Press: 13-18.

International Journal of Interactive Worlds 18

Petridis, P., White, M., Mourkousis, N.,

Liarokapis, F., Sifiniotis, M. Basu, A. &

Gatzidis, C. (2005). "Exploring and

Interacting with Virtual Museums," CAA

2005: The World in your eyes,

Tomar,Portugal.

PIXELearning. (2010). Pixel Learning:

Serious Games and Immersive Simulation for

Learning and Development, Retrieved

21/06/2010, from

http://www.pixelearning.com/.

lanet Unreal. (2010). Planet Unreal Resource,

21/06/2010, from

http://planetunreal.gamespy.com/.

Playgen. (2010). "Make Games and

Simulations with PlayGen," Retrieved

21/06//2010, from http://playgen.com/.

Protopsaltis, A., Auneau, L., Dunwell, I., de

Freitas, S., Petridis, P., Arnab, S., Scarle, S. &

Hendrix, M. (2011). "Scenario-Based Serious

Games Repurposing," ACM SIGDOC 29th

International Conference on Design of

Communication, ACM

Protopsaltis, A., Panzoli, D., Dunwell, I. & de

Freitas, S. (2010). "Repurposing Serious

Games in Health Care Education," 12th

Mediterranean Conference on Medical and

Biological Engineering and Computing

(MEDICON 2010)

Robertson, G., Czerwinski, M. & Van Dantzich,

M. (1997). "Immersion in Desktop Virtual

Reality," Proceedings of the 10th annual ACM

symposium on User interface software and

technology, ACM Press.: 11-19.

Robillard, G. Bouchard, S. Fournier, T. &

Renaud, P. (2003). "Anxiety and Presence

Using VR Immersion: A Comparative Study of

the Reactions of Phobic and Non-Phobic

Participants in Therapeutic Virtual

Environments Derived from Computer

Games." CyberPsychol Behav 6(5): 467-475.

Sander, P. V. & Mitchell, J. L. (2006). 'Out-of-

Core Rendering of Large Meshes with

Progressive Buffers,' ACM SIGGRAPH 2006:

Proceedings of the conference on SIGGRAPH

2006 course notes (2006). 9: 1-18.

Scott, B. (2002). The Illusion of Intelligence,

AI Game Programming Wisdom, Charles River

Media: 16-20.

Seung Seok Noh, Sung Dea Hong & Jin Wan

Park (2006). "Using a Game Engine

Technique to Produce 3D Entertainment

Contents," Proceedings of the 16th

International Conference on Artificial Reality

and Telexistence--Workshops (ICAT'06).

Shiratuddin, M. F. & Fletcher, D. (2007).

"Utilizing 3D Games Development Tool for

Architectural Design in a Virtual

Environment," 7th International Conference

on Construction Applications of Virtual

Reality.

Slater, M. (2003). "A Note on Presence

Terminology," from www.presence-

connect.com.

Slater, M. & Ushoh, M.(1993).

'Representation Systems, Perceptual

Position, and Presence in Immersive Virtual

Environments,' Presence: Teleoperators and

Virtual Environments 2(3): 221-233.

Treisman, A. M. & Gelade, G. (1980). "A

Feature-Integration Theory of Attention,"

Cognitive Psychology 12(1): 97-136.

Trenholme, D. & Smith, S. P. (2008).

"Computer Game Engines for Developing

First-Person Virtual Environments," Virtual

Reality, 12(3): 181-187.

Ubisoft. (2010). Retrieved 21/06/2010,

2010, from

http://darkmessiahgame.uk.ubi.com/.

19 International Journal of Interactive Worlds

Unity. (2009). Retrieved 04/11/2009, from

http://unity3d.com/.

Unreal Wiki. (2010). Unreal Wiki. Retrieved

21/06/2010, from

http://wiki.beyondunreal.com/.

Valve. (2010). Retrieved 21/06/2010,

2010, from http://orange.half-life2.com/.

Valve's Wiki. (2010). "Valve's Source

Developer Wiki," Retrieved 21/06/2010,

from

http://developer.valvesoftware.com/wiki/S

DK_Docs.

Warburton, S. (2008). 'Defining a Framework

for Teaching Practices Inside Virtual

Immersive Environments: the Tension

Between Control and Pedagogical Approach,'

Proceedings of RELive ’08 Conference.

WikiPedia. (2010). "Game Engines,"

Retrieved 21/06/2010, from

http://en.wikipedia.org/wiki/List_of_game_e

ngines.

Wray, R. E. Laird, J. E. Nuxoll, A. Stokes, D. &

Kerfoot, A. (2004). "Synthetic Adversaries for

Urban Combat Training," Proceedings of the

2004 Innovative Applications of Artificial

Intelligence Conference, San Jose, CA.

