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Abstract 

  

This paper improves the estimation of continuous time stochastic model that treats volatility as 

a latent variable and compares the forecasting performance of the Kalman filter procedure with 

Exponential model of Autoregressive Conditional Heteroscedastisity. Our empirical study 

examines the stock indice TUNINDEX by using the daily close price data over the period  

December 31, 1997, its creation date, to  December 31, 2009. The results suggest the significant 

existence of leverage effect between TUNINDEX returns and its volatility. Indeed, an 

unanticipated increase in Tunindex return leads to increased uncertainty that is greater than 

that induced by an unanticipated drop in return. Thus, the volatility forecasts based on Kalman 

filter model may outperform those of EGARCH model. 
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Introduction 

 

One of the main phenomena observed in 

the process of stock returns is the presence 

of strong variations over times; these are 

periods of turbulence in financial markets. 

Statistically, the existence of these 

movements results in fat tails in the 

variations distribution function, calling into 

question the very strong assumption of 

Gaussian distribution returns. This 

empirical evidence has led to the 

invalidation of the famous formula of Black 

and Scholes (1973) that assumes that 

returns are generated from a normal 

distribution whose mean and variance are 

constant over time. Large efforts were then 

undertaken to consider the statistical 

properties of stock market   fluctuations. 

The financial literature mainly 

concentrates on two approaches: the 

autoregressive models ARCH 

(Autoregressive Conditional 

Heteroscedasticity) introduced by Engel 

(1982) and the models with non 

deterministic volatility based on the works 

of Bachelier (1900). However, the big critic 

of ARCH model is a deterministic approach, 

while the other works consider making 

some volatility a random (unpredictable) 

variable. Several directions of research are 

developed for this approach: the stochastic 

volatility models   introduced by Hull and 

White (1987), it is about a geometric 

Brownian process. It presents the major 

inconvenience not to be stationary. This 

type of specification was quickly 

abandoned for the benefit of the models 

generating a stationary volatility process, 

of type mean-reverting.  Over time, the 

process tends to drift towards its long-term 

mean: such a process is named Ornstein-

Uhlenbeck. Reference articles treating this 

type of model are the ones of Stein, E., and 

J.Stein (1991) for its simple version and of 

Harvey, Ruiz and Shephard (1994) for its 

logarithmic version. The econometric 

estimation of these models poses a 

challenge. Indeed, financial models are 

expressed in continuous time while 

observations can only be collected in a 

discrete time. On the other hand, the 

models studied are bivariate latent models 

where volatility is unobservable. First it is 

noticed that there is no analytical solution 

to this bivariate process. Therefore, we 

cannot consider exact discretization from 

which we could deduce a likelihood. The 
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only way to cope with this is discretization 

approximation. Several discretization 

schemes are considered, the most popular 

being the Euler-method and the 

discretization ARCH. Volatility forecasting 

is an essential task in financial markets, so 

there are many papers that study 

forecasting performance of different 

volatility models in the literature, but many 

studies have been written in the theme of 

deterministic volatility modeling. The aim 

of this paper is to estimate and predict 

stochastic volatility from these two 

discretizations approaches above. Our 

empirical study is based on historical daily 

data of TUNINDEX in the period between 

December 31, 1997 and December 31, 

2009. Unfortunately, there is no single 

procedure available to calculate and 

predict volatility. In this paper, the 

researchers compare the Kalman filter 

procedure (Harvey & al., 1994) and an 

EGARCH estimation approach (Nelson, 

1990). The remainder of the paper is 

organized as follows. In section 2, there is a 

description of the estimation methods of 

the stochastic volatility model. Section 3 

presents the forecasting Tunindex 

volatility. Section 5 concludes. 

 

Estimating Stochastic Volatility 

TUNINDEX 

 

In this study, the logarithm of the 

instantaneous volatility follows the process 

of mean-reverting, also called the process 

"Ornstein-Uhlenbeck”. These reflect the 

presence of a force reverting to a long-term 

drift of the volatility. In particular, if S 

represents the value of TUNINDEX and if 
2ln tσ symbolizes the logarithm of the 

instantaneous volatility, the dynamics of 

the bivariate diffusion process are 

governed by the following equations: 
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Brownian movement dBt and  dWt   are 

possibly correlated, E(dBt  dWt)= dtρ .The 

coefficient ρ
 

has a strong economic 

content because it represents the leverage 

effect. The parameters to estimate, for this 

type of model is the drift cα , the long-term 

average ϑ , the speed of mean reversion κ  

and volatility of volatilityγ . These four 

parameters are considered constant, they 

will be determined from the database of 

the rate of return TUNINDEX between time 

t0 and T, which are respectively the first 

and last date in the database 

 

Volatility Estimation via the Kalman 

Filter 

 

To estimate model (1), Harvey & al. (1994) 

conducted a linearization. This 

transformation helps to develop a model 

state measure. However, it should develop 

the log-OU by discretizing with a step equal 

to that of observations, denote by ∆  the 

step of the discretization, for daily data, 

2521=∆  where approximately 252 is 

being the number of working days in a 

year, the discretization Euler gives: 
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tu and tv , two error terms are Gaussian 

with zero mean and variance 1. This model 

can be rewritten as follows: 
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tY indicates the return of the support, 

2ln tth σ= , ∆= cαα , ∆= ϑκµ , 

∆−= κβ 1 and ∆= γδ . Finally, the 

variations between two observations are 

modeled following the standard form: 
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Formally adopting the notation 

( )TYYY ...1= of the return vector of 

Support, )...( 1 Thhh =  unobservable 

volatility vector and denote byθ  the set of 

parameters ( )δβµα ,,, , the parameter α
must be estimated prior to effecting the 

linearization of the model. The estimator of

α  is: 
 

∑
=

=
T

t
tY

T 1

1α̂                                                                                                                                     

(5) 

 

To linearize the first equation of system 

(4), we square α̂−tY  and express it in 

logarithmic form. The following is 

obtained: 
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As further developing this equation as we 

know that tu  ~ N (0.1), we can therefore 

deduce the distribution of ( )2ln tu . It 

corresponds to a logarithmic χ2 

distribution, whose expectation is -1.27 

and the variance is 0.5
2π , approximately 

4.93. Note however that ( )2ln tu  cannot be 

correctly approximated by a normal law 

only if the sample is very large. 

 

Following the approach of Racicot F.-E. and 

Theoret R. (2005), by adding and 

subtracting ( )2ln tuE  in the first equation 

of model (6), we obtain: 

 

( )( ) ( ) ( ) ( )[ ]2222 lnlnlnˆln ttttt uEuhuEY −++=−α
 

Setting ( ) ( )[ ]22 lnln tt uEu −=ξ  and 

tvδζ = , we get two white noise centered 

on variance  4.93 and 
2δ  respectively. 

 

We can therefore rewrite the model (6) as 

follows: 
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Where ( )( )2* ˆln α−= tt YY and c is a 

constant introduced to take into account 

that it equals only      -1.27 in very large 

samples. This model is as state-space 

linear. Equations 1 and 3 of the model (7) 

are in the appropriate form to use the 

Kalman filter. The first equation is called 

measurement equation as the variable Y is 

observed. The second equation is the 

equation of state or transition as h the state 

variable is latent. The method of estimating 

this model is then explained in two steps: 

first, the latent variables are estimated by 

Kalman filter approach, then the 

parameters are estimated by the method of 

Maximum Likelihood. 

 

The researchers used EViews software for 

the implementation of this algorithm. The 

result of estimating the state-space model 

appears in the following table: 
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Table 1: Estimation of Stochastic Volatility of TUNINDEX Returns 

 

Sspace: SS01    

Method: Maximum likelihood (Marquardt)  

Date: 01/30/10   Time: 16:34   

Sample: 12/31/1997 12/31/2009   

Included observations: 2993   

Convergence achieved after 41 iterations  

     
     
 Coefficient Std. Error z-Statistic Prob.   

     
     
C(1) 0.118033 17484.80 6.75E-06 1.0000 

C(2) 0.917170 0.016806 54.57302 0.0000 

C(3) -1.906974 0.235490 -8.097885 0.0000 

C(4) -0.931217 1448.262 -0.000643 0.9995 

     
     
 Final State Root MSE z-Statistic Prob.   

     
     
HTT -11.47980 0.771733 -14.87535 0.0000 

     
     
Log likelihood -6777.460      Akaike info criterion 4.531547 

Parameters 4      Schwarz criterion 4.539571 

Diffuse priors 0      Hannan-Quinn criter. 4.534434 

     
     

 

As obvious in Table (1), the coefficients 

C(1) and C(4) are not significant at the 

95%. The coefficients C(1) to C(4) are the 

parameters of the model (7) with C(1)= c, 

C(2)= β  and   exp(C(3))= 
2δ and C(4)= µ

. Using the system of equations linking the 

parameters of discrete-time model with the 

parameters of the model in continuous 

time, table (2) is drawn to summarize the 

results of estimation for the log-OU after 

the Euler discretization. Note that the 

parameters obtained from this 

discretization are annualized. 

 

Table 2 : Estimation Results for Log-OU Model 

 

 
cα  ϑ  κ  γ  ρ  

Log-OU 0.12 -11.24 20.87 6.11 0.60 

 

It is noted that the instantaneous volatility 

moves around a long-term trend equal to 

0.45%. To achieve this, use the following 

equation 







+

κ
γϑ
4

exp
2

 and take root. κ  

relatively high value is also found, which 

suggests a pronounced effect of mean 

reversion. 
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It is  also noted that the coefficient of 

correlation ρ
 between movements in 

returns and movements in volatility is 

different to zero, which may justify the 

assumptions considered by some authors, 

such as Heston (1993) for example, who 

proved that the correlation between 

volatility and returns of assets is essential 

to generate the asymmetric distribution. 

The evolution of the observed variables 

and filtered of 
*Y  illustrated in Figure (1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Values Observed and Filtred of 
*Y  

 

 

In option pricing models, volatilities are 

expressed yearly. In portfolio selection 

model in continuous time and for the 

calculation of VaR, the reference period is 

the day, volatility is expressed as daily. 

Moreover, according to the equation
2ln tth σ= , the stochastic volatility of 

TUNINDEX return is equal to: 
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To annualize this volatility, multiply tσ  by

252 . In other words, the daily volatility 

is about 6% of annual volatility. The 

evolution of the volatility of TUNINDEX 

return is shown in figure (2). 
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Figure 2: Stochastic Volatility of TUNINDEX Return 

 

It is found that volatility is experiencing 

strong fluctuations around its average, 

which is 0.45% on daily basis, 

corresponding to 7.1% in annual 

frequency. 

 

The first half of the decade was 

characterized by very high levels of 

volatility, the movement began in 1999, as 

shown in Figure (2), as a historical 

volatility. This period is also characterized 

by a multiplication of volatility peaks. A 

peak in volatility specifies a phase when 

the volatility settles at a level significantly 

above its long-term average. After a sharp 

drop between 2003 and 2005, the volatility 

has temporarily stabilized at a low level 

before increasing again in 2006. The 

increase in volatility during a period of 

time, results from a conjunction of proper 

phenomena to this period, such as the 

events of 11 September 2001, which 

significantly changed the aspect of risk 

taking behavior of investors just like the 

aspects of growth. 

 

Exponential Model of Autoregressive 

Conditional Heteroscedastisity 

 

Models of the ARCH family (Autoregressive 

Conditional Heteroscedasticity) have 

enjoyed considerable success since their 

first version put forward by Engel (1982). 

Nelson (1990) showed that ARCH models 

have the same stationary distributions that 

some stochastic volatility models 

expressed in continuous time. Specifically, 

the E-GARCH model has the same 

stationary distribution as a version of log-

OU given by  model (1). Indeed, this model 

is very useful to model not only excess 

kurtosis but also  asymmetric effects that 

have returns on volatility. The simplest and 

most used EGARCH model is the EGARCH 

(1,1) defined as follows: 
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Where tY  is a random variable 

representing the arithmetic return of the 

support tS , ( )1,0Nzt →  and 

',,,, ααβωµ
 
are real constants. 

 

The process 
2ln
t

σ  is AR (1) and admits a 

stationary solution if and only if 1〈β . 

 

Resume model (1): 
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Nelson (1990) proposes a suite of models 

indexed by h which converges in 

distribution to model (1), when the 

amplitude of the elementary time interval 

approaches zero. Consider the family of 

models: 

 

( )

( ) [ ]







+−+=

+=
−

+

+

*222
1

1

lnlnln kzhh

zhh
S

SS

khkhhk

kkhc
kh

khhk

γσϑκσσ

σα

Where 









−+=

π
ϕθ 2*

kkk zzz . Indeed 

the two random variables: kz and 

π
2−kz are centered, reduced and 

uncorrelated. The parameter θ allows to 

model the asymmetric effect related to the 

sign of innovation kz and the parameter 

ϕ  takes into account the asymmetry 

related to the amplitude of innovation kz

as measured by the difference
π
2−kz . 

 

Therefore, the EGARCH model (1.1) 

describes a mean-reverting process. So the 

logarithmic conditional variance returns in 

long-term ϑ  with speed κ . The 

researchers will apply this model to 

Tunindex return in the period between 

December 31, 1997 and December 31, 

2009. Table (3) represents the results of 

estimating EGARCH (1,1) model. 

 

Table 3- Estimation of Conditional Volatility of Tunindex Returns 

 

Dependent Variable: Rdt Tunindex   

Method: ML - ARCH   

Date: 11/29/10   Time: 18:37   

Sample: 12/31/1997 12/31/2009  

Included observations: 2993   

Convergence achieved after 19 iterations  

Bollerslev-Wooldrige robust standard errors & covariance 

Presample variance: unconditional  

LOG(GARCH) = C(2) + C(3)*ABS(RESID(-1)/@SQRT(GARCH(-1))) + C(4) 

        *RESID(-1)/@SQRT(GARCH(-1)) + C(5)*LOG(GARCH(-1)) 

     
      Coefficient Std. Error z-Statistic Prob.   

     
     C 0.000239 6.78E-05 3.532979 0.0004 

     
      Variance Equation   

     
     C(2) -1.389300 0.252892 -5.493651 0.0000 

C(3) 0.442591 0.060366 7.331807 0.0000 

C(4) 0.013632 0.024462 0.557279 0.5773 

C(5) 0.904112 0.019923 45.38145 0.0000 

     
     R-squared 0.002761     Mean dependent var 0.000499 

Adjusted R-squared 0.004104     S.D. dependent var .004941 

S.E. of regression 0.004951     Akaike info criterion -8.116412 

Sum squared resid 0.073257     Schwarz criterion -8.106382 

Log likelihood 12151.21     Hannan-Quinn criter. -8.112804 

Durbin-Watson stat 1.355499    

          
 

As can be seen from the table above, the 

coefficients C, C(2), C(3) and C(5) are 

significant at the 95%. The coefficients C,  

 

C(2), C(3), C(4) and C(5) are respectively 

the parameters βααωµ and,',,  of the 

EGARCH (1.1) model. 
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After estimating the EGARCH (1.1) model 

with maximum likelihood method, the 

parameters of the model (1) can be 

determined by the following equivalence: 
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From EGARCH (1,1) model, an estimate of 

the conditional volatility can be proposed, 

according to the equation: 
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βααω ˆˆ,'ˆ,ˆ and indicate the maximum 

likelihood estimating. 

 

 

 

 

 

 
Figure 3: Stochastic Volatility and Conditional Volatility of Tunindex Returns 

 

In Figure (3), we compare the conditional 

volatility associated with the EGARCH (1.1) 

model to stochastic volatility calculated 

previously. It is noted that the profiles of 

evolution of the two volatility curves are 

very close. We also observe that the 

stochastic volatility fluctuates less than the 

conditional volatility. In this case, the 

conditional volatility associated with the 

EGARCH (1,1) model had increased further 

during the market crash of October 2008. 

 

In this study, the leverage effect is 

represented byθ ; it is positive and 

statistically different from zero. In figure 

(4), the new impact for Tunindex return by 

NIC (News Impact Curve) is determined; 

the curve representing the variance 
2σ  

against impact
 σ

ε=z ,  
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Figure 4: News Impact Curve of Tunindex Return 

 

An asymmetric leverage effect is clearly 

observed in Figure (4). Thus, the 

conditional variance of Tunindex return 

reacted more to positive shocks than 

negative shocks of equal magnitude. The 

economic consequence of this result is that 

an unanticipated increase in Tunindex 

return leads to increased uncertainty 

greater than that induced by an 

unanticipated drop in return. 

 

Forecasting TUNINDEX Volatility 

 

It is now possible to produce forecasts of 

volatility from the models established, 

which are strictly recursive. Take the case 

of TUNINDEX. The forecast starts January 

02, 2010, the sample ending on the date of 

December 31, 2009, and we continue to 

forecast until June 30, 2010. The result of 

forecast is shown in Figure (5). As can be 

seen, the stochastic volatility model 

provides an increase in volatility like the 

EGARCH (1,1) model. But it should be 

noted that the volatility arising from the 

EGARCH (1.1) model was initially slightly 

higher than the stochastic volatility. Thus, 

the two volatilities tend to be closer to their 

equilibrium value in the long term. 

 
Figure 5: Forecasting Tunindex Volatility: Kalman Filter Model and  EGARCH (1,1) Model 

 

To explore the robustness of forecast 

accuracy, the root mean squared forecast 

error or RMSFE criterion was employed.  

 

Applying this formula: 
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Where tY is the actual value at period t, and 

tF  is the forecast for period t. Hence, 

RMSFE based on Kalman filter forecast 

model is lower than the one based on 

EGARCH forecast model. That is why we 

strongly recommend the Kalman filter as a 

powerful tool to forecast stochastic 

volatility. 

 

Conclusion 

 

In this paper, the researchers demonstrate 

their interest  in stochastic volatility model 

where volatility is governed by logarithmic 

Ornstein-Uhlenbeck process. This 

specification has been frequently used in 

the literature to describe the volatility 

process, mainly because of its convenience 

and simplicity. 

 

The estimation procedures associated are 

the state-space model and the 

EGARCH(1,1) model. Our empirical study is 

based on the historical daily data of 

TUNINDEX in the period between 31 

December 31, 1997 and December 31, 

2009. 

 

This wide research reflects the importance 

of volatility in investment. So the empirical 

results have confirmed the hypothesis of 

correlation between movements in 

Tunindex returns and movements in 

volatility. In fact, an unanticipated increase 

in Tunindex return leads to increased 

uncertainty greater than that induced by an 

unanticipated drop in return. In addition, 

estimates obtained from the two 

discretization schemes (Euler and ARCH) 

are quite similar.  

 

Forecasting the returns volatility, 

regardless of the model used, is an exercise 

fraught with risk. The model of stochastic 

volatility predicted an increase in volatility 

like the EGARCH (1, 1) model. But it should 

be noted that the volatility arising from the 

EGARCH (1, 1) model was initially slightly 

higher than the stochastic volatility. Thus, 

the two volatilities tend to be closer to their 

equilibrium value in the long term. 

 

This survey has concentrated on the 

question: which method will provide the 

best forecasts? Forecasting can be a tedious 

task for financial analysts because of 

discrepancies in the results provided by 

different tools. The researchers strongly 

recommend the Kalman filter as a powerful 

tool to forecast stochastic volatility. 

However, both models remain easily 

implementable alternatives to more 

complex and computer-intensive 

techniques such as MCMC. 

 

A good forecast of the volatility of asset 

prices over the investment holding period 

is a good starting point for assessing 

investment risk. Thus, volatility forecasting 

will continue to remain a specialist subject 

and will continue to be studied vigorously. 
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