
IBIMA Publishing

Journal of Software & Systems Development

http://www.ibimapublishing.com/journals/JSSD/jssd.html

Vol. 2017 (2017), Article ID 171474, 11 pages

DOI: 10.5171/2017.171474

Cite this Article as: Harvey Hyman (2017), " Bridging the Gap between RFP and SDLC: How to Meet the

Challenge with a Software Development and Implementation Plan (S-DIP) ", Journal of Software & Systems

Development, Vol. 2017 (2017), Article ID 171474, DOI: 10.5171/2017.171474

Research Article

Bridging the Gap between RFP and SDLC: How to

Meet the Challenge with a Software Development

and Implementation Plan (S-DIP)

Harvey Hyman

Library of Congress, National Library Service, Washington, DC

Received date: 10 May 2016; Accepted date: 28 July 2016; Published date: 27 January 2017

Academic Editor: Wan Nurhayati Wan Ab. Rahman

Copyright © 2017. Harvey Hyman. Distributed under Creative Commons CC-BY 4.0

Introduction

Over the past 20 years, numerous academic

papers as well as industry consulting groups

have consistently reported on the staggering

failure rate for software development

projects, especially enterprise level projects

(DeMarco and Lister, 2013; Nelson, 2005;

McConnell, 2001). Likewise, many of these

same studies and industry reports have

suggested a variety of possible explanations

for this phenomenon of project failure. These

explanations range from failure in the

planning stage to incompetence in the

execution stage (Nelson, 2005; McConnell,

2001). What the vast majority of the reported

failures have in common is the recurring

misalignment between system requirements

and the final software product.

In fact, the subject of software project failure

has become an almost ubiquitous “baked-in”

Abstract

This paper presents a discussion on addressing the gap that exists between the drafting of a

Request for Proposal (RFP) and the successful delivery of a system that meets the expectations

of stakeholders and the needs of end-users. The Software Development and Implementation

Plan (S-DIP) framework is proposed as a solution to the problem by applying the theory stages

of the Software Development Lifecycle (SDLC) to the RFP documentation. The framework

supports a regimented vetting process to provide a better translation of stakeholder’s goals and

end-user needs to the RFP document and improve alignment between RFP with SDLC, project

management execution, and stakeholder expectations. A study of the S-DIP framework across

five organizations has found it to provide better insight into the end-users’ needs for the

proposed system, better clarity in terms of priorities and consequences in managers’ decision

making, and improvement in both quality and satisfaction in the final delivery of the system,

especially on the enterprise level.

Keywords: Request for Proposal (RFP), Project Management, Software Development, Software

Development Life Cycle (SDLC), Enterprise Systems, Business Process Reengineering (BPR).

Journal of Software & Systems Development 2

Harvey Hyman (2017), Journal of Software & Systems Development, DOI: 10.5171/2017.171474

expectation, accounting for predictions in

cost overruns, late deliveries, missed

milestones, and under-performance in

features, functions and usability. Frequent

industry status updates such as the Standish

Group’s Chaos Report, often site the

economic costs associated with the latest

round of software system failures to meet the

end-user needs and stakeholder

organizational goals.

This paper takes a fresh look at the software

development process and explores how a

particular aspect of the process might shed

light on this recurring problem – the Request

for Proposal (RFP).

The “RFP” as it is known by practitioners and

managers alike, has grown from its

apocryphal beginning to become the

ubiquitous core document for system

delivery and project management – it is the

alpha and the omega, from which the entire

project is sourced, from procurement to

execution.

The Problem Restated as a Research

Question

The problem, as documented in many

reports and studies, is that quite often, RFPs

do not produce the desired results for end-

users or stakeholders (Saito et al., 2012). In

fact, all too often, the RFP starts off as a

vague and nebulous, yet aspirational

document, representing the hopes and

dreams for a new system, or the

improvement in performance and

responsiveness for a legacy system (Wilson,

1993; Lehman, 2005). Unfortunately, time

and again, the contents of the RFP never fully

translate end-user needs with system

requirements (Porter-RothBud, 2004; Saito

et al., 2012).

A common complaint documented in

industry is the apparent gap between the

RFP and the final system as delivered: RFPs

frequently do not reflect the true, underlying

goals of management; do not result in a clear

development plan to accurately meet system

requirements; and repeatedly lead to

dissatisfied end-users – habitually

necessitating scrapped work and rework

(Boehm and Turner, 2003; Nelson, 2005;

McConnell, 2001). The problem is restated as

the research question addressed in this

paper: How can we bridge the gap between

RFP and SDLC?

Motivation

Perhaps the most interesting place to start a

discussion about the subject of RFP is to

acknowledge that it is an entirely industry

created approach to system design and

development (Finkelstein et al., 1996). The

underlying assumption for its use is that it

seeks to optimize the process for soliciting

bids in the procurement of a service or

product (Andrea, 2003; Davy, 2011). That

being said, it is curious how there have been

little to no significant studies or reviews

exploring RFP as a conceptual topic,

framework for analysis, or process oriented

model. This might cause the reader to

consider the conventional wisdom which

typically suggests that where there is little

study or review on a subject matter, there is

usually nothing significant to explore.

But, how can we fail to critically review such

a ubiquitous documentary procedure such as

the RFP, especially in light of the fact that it is

the gateway entry point for virtually all large

scale industry and governmental

procurements of systems? Likewise, with the

importance and consequence in the vast

effort of research struggling to explain the

phenomenon of project failures, and the

evolving paradigms in software engineering,

software development and project

management (Demarco and Lister, 2013;

Nelson, 2005; McConnell, 2001; Hyman,

2013), isn’t it time to examine the underlying

assumptions and possible causes and effects

that the RFP may play as a role: How is it that

the RFP has sneaked up to become the de

facto standard for the commencement of a

system development project; and how is it

that the RFP has gone almost completely un-

scrutinized for so long?

3 Journal of Software & Systems Development

Harvey Hyman (2017), Journal of Software & Systems Development, DOI: 10.5171/2017.171474

The Origination and Evolution of RFP

Historical references for how the RFP came

into existence are nebulous and obscure.

Lacking a definitive introduction, it seems to

have quietly creeped up like slow growing

moss, to become the decisive procedural

device for modern system and software

acquisitions. A review of early articles from

the 1960s and 1970s treat the RFP as having

always existed, like the “steady state

universe,” incorporating it by reference but

never truly establishing a “big bang”

instantiation moment. However, as part of a

preliminary discussion, these articles do

provide significant insight about the original

intent and purpose of the RFP, and are quite

informative on its foundation in form,

substance and use.

In these early references, RFP is existentially

defined as: “very detailed, and [was] by itself,

the performance and design requirements”,

and “at a level of detail that it was, by itself,

the implementation concept and test plan”

(Wolverton, 1974).

When we trace the roots of the RFP

document and its associated process, we find

that, ironically, it has evolved mainly from

the domain of Cost Estimation. In fact,

substantial work can be found on the subject

matter and how the RFP is a definitive

document in the evaluating and negotiating

processes within the context of Cost

Estimation (Wolverton, 1974; Saito et al.,

2012; Andrea, 2003).

One of the earliest definitive references to

RFP as a process, in and of itself, for software

procurement is a 1979 article by Leland

Coonce entitled “Use of Request for

Proposals for Software Purchase Selection.”

Unfortunately, this obscure article, seemingly

goes on to be cited by no one, and even the

broadest web search queries run by this

author have revealed no companion articles

to offer to the reader.

 However, the Coonce article does provide us

with at least a frame of reference for RFP,

operationally. In fact, in the intervening years

from the 1980s to the 2000s, RFP goes

largely unnoticed and quietly becomes an

accepted underlying assumption for Cost

Estimation and Project Management subject

matter articles. It reemerges as an

exploratory topic in the early 2000s, and

even then, it is treated rather lightly, once

again, as an untested assumption and

foundation for narrative discussions on

Project Management (Davy, 2011; Nelson,

2005; Hyman, 2013).

As an example of the modern treatment of

the RFP we find a simple article in the

Hudson Valley Business Journal,

appropriately entitled “How to Create a Great

RFP” (Ladke, 2013). The significance of its

mention here is that, like many of the self-

declared expert references and free advice

sources on the subject of the RFP, little more

than narrow opinion pieces and ad hoc “best

practices” are offered to assist the curious

practitioner (Davy, 2011). Rarely do we come

across a significant and serious study

offering a framework or model to enhance

the use of the RFP as a vetting device for

system and software procurement (Royce,

1970; Wilson, 1993; Saito et al., 2012;

Lehman, 2005; Davy, 2011; Hyman, 2013).

“When done right, RFPs enable businesses

and government agencies to fairly evaluate

competing proposals while reviewing the

broadest possible range of potential

solutions. All too often, however, RFPs fail to

meet these goals, because their creators

simply don't understand how to create them

effectively” (Porter-RothBud, 2002).

The Gap between RFP and Successful

Delivery of a Software Project

Even the best executed project management

will not rescue a poorly vetted system, or a

system that does not fully reflect the goals of

stakeholders or the needs of the end-users

(Hyman, 2013). The RFP process, as

currently implemented by industry does not

Journal of Software & Systems Development 4

Harvey Hyman (2017), Journal of Software & Systems Development, DOI: 10.5171/2017.171474

align with the SDLC stages of planning,

analysis, design and implementation.

The RFP process is broken down into four

stages of specification, proposal, evaluation,

and implementation (Andrea, 2003).

Specification refers to the customer

description of stakeholder requirements and

end-user needs. This stage results in the

release of the RFP document. The Proposal

stage refers to the vendor response to the

RFP. In the response, the vendor “assesses

the requirements and delivers their

response, which includes their proposed

solution” (Andrea, 2003). The flaw that lies

within this methodology is that, even

assuming a vetting process in the Evaluation

stage, too much of the analysis is left up to

the customer in stage one, and too much of

the design is left up to the vendor in stage

two.

The gap lies in the reliance on the RFP to

perform a function it was never intended to

perform – act as a framework for system

development. The SDLC has been a

framework for system development since the

1980s (Royce, 1970; Boehm and Turner,

2003; Hyman, 2013). The RFP as a fully

vetted supporting document produced

during the SDLC process can lead to a well-

designed system to be executed by project

management leaders and development

personnel.

However, this has not been the case; instead

of a supported document, the RFP has

evolved into a substitute procedural

framework for the SDLC, leading to

breakdowns in the development process

(Hyman, 2013). Relying on the RFP as a

framework in and of itself, rather than as a

supporting document, will often result in the

vendor proposal of stage two, being “a shot in

the dark.” There are two main reasons for

this. First, the Specification stage of the RFP

encompasses the first two stages of SDLC,

planning and analysis; whereas the Proposal

stage of the RFP encompasses the isolated

SDLC stage of design, and nothing to

establish continuity among these three

stages with implementation. Second, the

vendor is relying on the customer to provide

a set of fully vetted system requirements.

This is unrealistic, and in fact, this false

assumption can be directly traced to

numerous examples of failure in the planning

stage of development, due to reliance upon

wrongly deduced guidelines provided by the

customer (McConnell, 2001). It is flawed

thinking to expect the customer to be capable

of providing complete and full system

requirements vetting (Hyman, 2013). Many a

failed project can trace its roots to this

mistaken approach (Nelson, 2005).

The thesis of this essay is that the stages of

RFP do not align with the stages of SDLC, and

for good reason – the RFP was an evolving

trend in documentation and never intended

to be an alternative to substitute for the SDLC

(Davy, 2011; Hyman, 2013). Therefore, how

can we expect successful delivery of any

project planned under one paradigm (RFP

process) but executed under a completely

different paradigm (SDLC process)?

It is certainly no mystery that we see so

many project failures and negative end-user

reports from the field, when we recognize the

gap between the misalignment of planning

and analysis, with design and

implementation. The S-DIP presented in this

paper is not the only attempt at addressing

this gap. There have been other, albeit a few,

attempts to address the gap between the

“system and its environment” (Dardenne et

al., 1993; Mylopoulos and Castro, 2000;

Castro et al., 2011). One such recent example

is the “Tropos Project” designed to model

“early and late requirements” (Castro et al.,

2011). The Tropos framework approach, as

described by Castro et al., follows a

“Requirements Driven Development

Methodology.” They apply Tropos to a case

study of a “Media Shop” in an attempt to

harmonize structured development

techniques with programming paradigms.

Building on Tropos and other similar works

targeting the gap between requirements and

development, the framework of S-DIP is

5 Journal of Software & Systems Development

Harvey Hyman (2017), Journal of Software & Systems Development, DOI: 10.5171/2017.171474

described in the next section along with a

narrative summary of its implementation and

roll out, in various development projects at

several organizations.

The Framework of S-DIP

This section describes the proposed

framework and model of S-DIP – designed to

harmonize the RFP process with the SDLC

model.

The S-DIP is a six stage process that has been

developed based upon interviews of

managers and developers at five different

organizations by tracking the chain of events

in their development processes, RFP

processes, documentation produced during

the processes, interactions with vendors

before and after the release of the RFP

documents, follow-up reports of “items

falling through the cracks,” tracing of

scrapped work and rework, user acceptance

testing reports, end-user satisfaction, and

stakeholder interviews.

Based on the responses and documentation

collected, the S-DIP has been designed to

address the need for a supporting framework

and model to guide an acquisition through a

vetting process ending with a robust and

detailed RFP document, and to provide a

benchmark methodology for a thorough and

detailed vendor selection and qualification

procedure. There are four commonalities

that were discovered to have occurred

during the development processes at all of

the organizations studied – these are

identified as four basic principles that the S-

DIP framework addresses.

The first principle that emerged from the

study was that every organization conducted

three categories of core activities in any

system or software development project:

Acquisition, Integration, and Implementation.

The first thing we realized when we analyzed

the data was that each of these categories

really were life cycles themselves, and that

many of the “failures” that were observed in

the development process could be traced to

conflating some or all of these activities. For

example, we found the vetting process that

takes place during the acquisition of a system

is a life cycle in and of itself, given that every

system begins with its procurement, whether

internally sourced or externally vendor

procured. It cannot be short circuited or

rushed by combining it with another process

or stage of development.

Likewise, integration is a category containing

a collection of activities that should be

treated as a life cycle of its own, with a

focused placed on how the newly procured

system will blend into the current way the

organization performs its business activities.

We found, that all too often, the activities

associated with integration were among the

most under-estimated by the procurement

team.

The category of implementation is the third

core set of activities. Questions that need to

be thoroughly vetted in this stage are: How

will this new system be installed? How will

our transition plan impact the way we

migrate our business activities to the new

system? How will our maintenance plan and

release schedule impact our work flow

processes?

The second principle that emerged was to

take a “clean slate” approach to system

development. Meaning we start from scratch,

by asking two simple questions: What do we

want to accomplish with this system? What

resources do we have to develop this system?

The projects that began with a clean slate

approach produced more robust and more

detailed documentation.

The third principle is the application of an

Input-Process-Output (IPO) model to every

process and sub-process performed by the

current or new system. This principle was a

late addition to the study. It was proposed to

several of the project teams during the study.

The teams that applied the IPO model to their

RFP process reported that fewer items “fell

through the cracks” and they had a

substantial reduction in scrapped work.

Journal of Software & Systems Development 6

Harvey Hyman (2017), Journal of Software & Systems Development, DOI: 10.5171/2017.171474

The fourth principle developed was to iterate

and evaluate, at each and every stage of the

S-DIP. By conducting frequent evaluations at

each stage of the process, the study found

that fewer “mistakes were baked in” to the

final system design because they were

discovered early enough in the process that

they could be rooted out. We depict the

above described activity categories in a Five-

Stage Evaluation Model adapted from the

original SDLC, displayed in Figure 1 below.

Figure 1: Five Stage Evaluation Model (Hyman, 2013)

The S-DIP itself is an adaptation of the stages

of the SDLC and several of the “reviews”

found and described in the MIL STD 1521b

Technical Reviews and Audits for Systems,

Equipments, and Computer Software (1986)

and the IEEE 12207-2008 Software Life Cycle

Processes (1995, 2008). When managers and

developers were asked during the study

about the MIL STD and IEEE processes, many

reported that they were familiar with both of

the processes, but that they rarely used them.

When asked why, the responses included:

“too tedious”, “not practical”, “inconsistent

with how we work here” – and no wonder,

the MIL STD 1521b was released in 1986,

and the IEEE 12207 has been largely

unchanged since 1995 – how can we expect

anyone to follow procedural guidelines that

are 30 and 20 years old respectively? The

general consensus among the practitioners

about the SDLC was that “it is good in

theory,” but does not translate well to the

focus of “project management and the

PMBOK.”

To address the concerns voiced in the

practitioner interviews, the S-DIP adapts

SDLC stages, and MIL STD and IEEE reviews,

to the RFP process by categorizing them into

six review phases, based on the three core

activity categories discovered during the

study: System Requirements Review,

Preliminary Design Review, Critical Design

Review, Test Readiness Review, System

Specification Review, and Implementation

Readiness Review. The phases are intended

to act as final reviews, validating the

correctness of the activities and verifying the

build for that phase of documentation – with

the ultimate goal being the production of a

detailed supporting document for vetting and

evaluating vendors in the RFP process. The

next paragraphs provide brief descriptions of

7 Journal of Software & Systems Development

Harvey Hyman (2017), Journal of Software & Systems Development, DOI: 10.5171/2017.171474

the six review phases of the S-DIP as depicted in Figure 2.

SRR IRRCDR TRR SSRPDR

System Development and Implementation Plan Phases of Review

Figure 2: System Development and Implementation Plan (S-DIP) Framework Model

(Hyman, 2013)

The System Requirements Review Phase of

the S-DIP serves as a structured initial

investigation into the system. Stakeholders

are identified, requirements are derived from

interviews and user stories, and use cases are

proposed to represent system level tests to

verify when requirements have been

delivered. This phase is completed with a full

review of all identified system requirements

as validated. Validated means that each

requirement has been documented and

mapped by stakeholder, system module, use

test case, and quality criteria. The key here is

in being disciplined to not move forward in

the RFP process until there is satisfaction

that the requirements review as defined

above has been met. Until it is met, the RFP

document does not move forward.

Once system requirements have been

reviewed, the RFP moves to the Preliminary

Design Review Phase. During this phase a

draft of the statement of work (SOW) is

generated. The SOW is based on a work

breakdown structure (WBS) that defines

exactly what will be built. Every requirement

must be broken down to its component

features. Every feature must be broken down

to its lowest, indivisible functions. The RFP

document initiated in the Requirements

Phase is further annotated with priorities

and criticalities for each requirement. This is

too important to leave to the vendor in the

post RFP release.

The S-DIP puts the analysis and

responsibility on the procuring organization,

and does not abdicate it to the vendor. Risk

identification, assessment, mitigation and

contingency planning is established and

considered as well. A completed Preliminary

Design Phase should contain documentation

supporting traceability for the SOW, WBS,

and an updated requirements document with

annotated priorities. If the evaluation review

at the end of this phase results in a “no go”

decision, then we revert to the previous

Requirements Phase to refactor and

revalidate that we in fact have correctly

identified and analyzed the requirements.

The next phase is Critical Design Review.

This phase assumes that the Preliminary

Design Review has been verified. This phase

is comprised of activities supporting design

and build of visual display and visualization

techniques. We found that organizations

applying the S-DIP, would build small

working prototypes in this phase for

stakeholder and end-user feedback. At the

very least, mockups of user interface screens

are designed and validated by the end-user.

The traceability documentation produced in

this phase typically included screen shots

from the end-user validated interface display

Journal of Software & Systems Development 8

Harvey Hyman (2017), Journal of Software & Systems Development, DOI: 10.5171/2017.171474

screens. Managers reported that during this

phase greater clarity is discovered about the

details of the system and how it will operate.

They also reported that, as a result, it was not

uncommon, and it was actually viewed as a

sign of good development and attention to

detail, if the Preliminary and Critical Review

Phases resulted in reversion to prior phases,

even all the way back to Requirements Phase

for refactoring and revalidation.

The Test Readiness Review assumes that the

project has passed Critical Design Review.

During the Test Readiness phase, test cases

are verified for each development level: unit,

integration and system. Test Readiness

proved to be a significant milestone because

it turns out to be the last feasible time in the

project life cycle that the RFP documentation

process can be reverted without significant

time delay or delivery slippage. Documents

produced and evaluated in this review are

the Test Plan, Test Description and Test

Report for evaluating the system’s

performance metrics.

System Specification Review is the next

phase. The significance of this phase is that

the RFP documentation has survived four

iterated reviews and is now being evaluated

for complete commitment of resources.

During this phase the physical and logical

specifications of the system are declared and

described. In this phase hardware, software,

operating system, communication links,

system operators and administrative

personnel are identified, allocated and

budgeted. The system specification should be

a natural consequence of the requirements

documentation, scope of work, visualized

designs and user interface screens, and test

case verification. By now, the system has

been thoroughly investigated, designed,

analyzed and test verified by the

procurement organization, and is ready to be

released as a fully vetted RFP document that

has organization-wide ownership and

commitment.

These five phases describe how managers

and developers can plan, analyze and design

a fully vetted system to meet the stakeholder

goals and end-user needs. The S-DIP

incorporates a sixth stage entirely dedicated

to producing implementation documentation,

separate and apart from the documentation

of the system itself. This is an original aspect

of the S-DIP that focuses on robustness and

detail currently lacking in the

implementation stage of the RFP process.

The underlying thinking here is that, even

though the entire system itself (requirements

and testing) has been fully vetted, without a

complete and detailed approach for how it

will be implemented, a project is still

significantly exposed to risk of failure in

execution. During our interviews of IT

project managers and developers, we found

that implementation is a particular subject

matter area that is often routinely short

changed or outright ignored during the RFP

planning process. During our interviews, we

were frequently told that implementation

planning is often conflated into other

segments of the RFP, or left out of the RFP

documentation process completely.

S-DIP covers this additional aspect of RFP

with the added phase of Implementation

Readiness Review. The purpose of this phase

is to develop the plans for transition and

implementation of the new system. In this

phase we find installation plans with

timelines and team personnel identified,

training plans for familiarizing end-users and

stakeholders with the operation of the

system, maintenance plans including

upgrade and release schedules, and

transition plans with timelines for shut down

of the old system and cut over to the new

system. User and administrator manuals are

also developed during this phase.

Now, obviously, not all of these activities are

completed during the RFP development. The

goal here is for the procurement team to set

aside place holders for these topics and begin

initial discussions and thoughts in these

areas, so that they are not completely

abdicated to the vendor, post RFP release.

Managers applying this phase of the S-DIP

reported that they liked the fact that they

9 Journal of Software & Systems Development

Harvey Hyman (2017), Journal of Software & Systems Development, DOI: 10.5171/2017.171474

were forced to carefully consider these topics

and consequences during the RFP process

and before the decision making is shifted to

the consultant or vendor.

Implementing the Five Stage Evaluation

Model

Managers reported that the application of the

Five Stage Model enforced evaluation

decisions at specified function points of the

S-DIP and provided greater clarity at each

step along the way in the RFP process.

Developers reported that they particularly

liked that evaluation was “built in, to each of

the phases of development” rather than

being a single phase, occurring at the end of

the life cycle when little could be done about

mistakes other than scrapping work and re-

work.

Inclusion of the fifth stage of Evaluation as a

central hub, interacting and influencing the

traditional four SDLC stages marks a

significant shift in the approach to software

development. The new approach views

evaluation as an intertwined element within

the SDLC itself, rather than a later stage

isolated gateway.

Applying S-DIP to Bridge the Gap

Since its introduction in 2013, the S-DIP

framework has been initiated in five

organizations, covering over one-hundred

end-users and software managers. The

responses from the field thus far have been

overwhelmingly positive. There have been

three main areas of feedback received. The

first area has been specifically about

requirements – teams that implemented the

S-DIP reported that they did a much better

job at developing requirements in two ways:

completeness and prioritization. Teams

reported that the concept of review and

reversion forced them to slow down and

reevaluate their requirements at several

occasions along the process. Teams also

reported that reversion allowed them to

“take a second and sometimes a third look at

their priorities in their choice of

requirements.”

The second area of feedback was about

testing – teams that implemented the S-DIP

reported that they had never thought about

acceptance tests before. Teams reported that

by “being forced to think through” how a

specific requirement was going to be tested

for successful delivery gave them better

clarity about the requirement itself and an

increased confidence in directing the

development project.

The third area of feedback was about the use

of IPO as a method for analysis. All teams

reported that they had never used IPO

before, but now they are using it in nearly

every aspect of their lives, not just on their

development projects. Teams reported that

using IPO gave them rigorous and very

detailed insight into “exactly what we wanted

to get out of the process and what was going

to be needed for the process to work.”

 Summary and Conclusion

This paper documents the system

development framework S-DIP, Software

Development and Implementation Plan, as a

methodology to support a vetting process for

stakeholder strategic goals and end-user

needs. The S-DIP provides a procedural

model to fully review and mature system

requirements for a more robust and detailed

RFP document – thereby closing the gap

between the RFP as a document and the

SDLC as a paradigm, for system and software

design and development.

The S-DIP has been introduced in several

organizations that have been undergoing

system development projects for both:

automation of manual systems and

reengineering of already automated systems.

Many of the project team managers whom

have used the S-DIP in their development

and production of an RFP have reported that

it has significantly improved their vendor

selection process and increased their internal

confidence and locus of control in the

Journal of Software & Systems Development

10

Harvey Hyman (2017), Journal of Software & Systems Development, DOI: 10.5171/2017.171474

management of the system development

project itself.

In selected field interviews, managers have

reported that they “developed better clarity

of the what we were looking for” and “had a

better focus going forward into the project

for what we needed to achieve for the new

system.” Developers reported that they had a

better understanding of what the customer

wanted to accomplish and this led to

designing better test plans for user

acceptance testing.

Of course, there is still much more to learn

about aligning organizational goals and end-

user needs with system requirements, but

like the Tropos Project, the S-DIP Framework

presented in this paper is a methodology for

practitioners to consider during their RFP

development and documentation processes.

References

1. Andrea, J. (2003, June). An agile request

for proposal (RFP) process. In Agile

Development Conference, 2003. ADC 2003.

Proceedings of the (pp. 152-161). IEEE.

2. Boehm, B., Turner, R. (2003). Balancing

agility and discipline: A guide for the

perplexed. Addison-Wesley Professional.

3. Castro, J., Kolp, M., Mylopoulos, J. (2001,

January). A requirements-driven

development methodology. In Advanced

Information Systems Engineering (pp. 108-

123). Springer Berlin Heidelberg.

4. Coonce, L. H. (1979). Use of Request for

Proposals for Software Purchase Selection.

CAUSE/EFFECT, 2(6), 32-34.

5. Dardenne, A., van Lamsweerde, A., Fickas,

S., (1993). “Goal–directed Requirements

Acquisition”, Science of Computer

Programming, 20, pp. 3-50.

6. Davy, D. (2011, October). Lessons from

the past: What can be learned from ancient

and modern rhetoric for a better RFP. In

Professional Communication Conference

(IPCC), 2011 IEEE International (pp. 1-15).

IEEE.

7. DeMarco, T., Lister, T. (2013).

Peopleware: productive projects and teams.

Addison-Wesley.

8. Finkelstein, A., Spanoudakis, G., Ryan, M.

(1996, March). Software package

requirements and procurement. In Software

Specification and Design, 1996., Proceedings

of the 8th International Workshop on (pp.

141-145). IEEE.

9. Hyman, H. S. (2013). Systems

Acquisitions, Integration, and

Implementation: For Engineers and IT

Professionals. Sentia Publishing, Texas, USA.

10. IEEE 12207-2008: Systems and Software

Engineering – Software Life Cycle Processes,

(1995, 2008)

11. Lehman, M. M. (2005, September). The

role and impact of assumptions in software

development, maintenance and evolution. In

Software Evolvability, 2005. IEEE

International Workshop on (pp. 3-14). IEEE.

12. McConnell, S. (2001). The nine deadly sins

of project planning. IEEE Software, (5), 5-7.

MIL STD 1521b: Technical Reviews and

Audits for Systems, Equipments, and

Computer Software, (1986).

13. Mylopoulos, J., Castro, J., (2000). “Tropos:

A Framework for Requirements-Driven

Software

Development,” Brinkkemper, J. and Solvberg,

A. (eds.), Information Systems

Engineering: State of the Art and Research

Themes, Springer-Verlag, June 2000, pp.261-

273.

14. Natovich, J. (2003). Vendor related risks

in IT development: A chronology of an

outsourced project failure. Technology

Analysis & Strategic Management, 15(4),

409-419.

11 Journal of Software & Systems Development

Harvey Hyman (2017), Journal of Software & Systems Development, DOI: 10.5171/2017.171474

15. Nelson, R. R. (2005). Project

retrospectives: Evaluating project success,

failure, and everything in between. MIS

Quarterly Executive, 4(3), 361-372.

16. Porter-Roth, B. (2002). Request for

proposal: A guide to effective RFP

development (pp. 1-293). Boston: Addison-

Wesley.

17. Saito, Y., Monden, A., Matsumoto, K. (2012,

October). Evaluation of Non Functional

Requirements in a Request for Proposal

(RFP). Seventh International Conference on

Software Process and Product Measurement.

Joint Conference of the 22nd International

Workshop (pp. 106-111). IEEE.

18. Wilson, D. G. (1993). Is honesty too much

to ask for in RFPs? Mechanical Engineering,

115(11),

