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Introduction 

 

Recent years have brought numerous successful 

research studies in machine learning algorithms, 

including reinforcement learning (RL) subarea. A 

characteristic feature of reinforcement learning 

is the use of experience gained from repeated 

simulation, that stands in contrast with 

supervised learning algorithms, which consume 

arbitrarily the provided training data. The 

technique of RL has proven to be very successful 

in optimizing strategies in various games and 

problems. That trait makes RL suitable for 

optimizing game policy and robotic control. 

Examples of reinforcement learning solutions 

surpassing human level include mastering classic 

games reported by  (Silver et al., 2016 and Silver 

et al., 2017) features of self-learning algorithms 

for Go and chess respectively. The effectiveness 

of deep reinforcement learning was also shown 

playing Atari games by Mnih et al., (2013 and 

2015). The most popular current libraries 
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providing game environments to research on RL 

agents are Python libraries Gymnasium (Towers 

et al., 2023) dedicated to modelling single player 

games and their multiplayer counterpart 

PettingZoo (Terry et al., 2021). This paper 

presents Amfiteatr - an alternative library to 

build conflict situation models with support for 

reinforcement learning. The main contribution of 

a developed library is the usage of safety features 

and better performance of Rust language to help 

build effective and correct simulation and 

reinforcement learning models. Beside distinct 

implementation language, library features 

different design of entity communication model.  

Choice of Implementation Language 

Developed library is aimed to maximize 

execution performance preserving model safety. 

For this purpose, the language Rust (Klabnik, 

Nichols et al., 2024) was selected. Rust is a multi-

paradigm, low level, and high control language; it 

is also a direct competitor of C++ in the system 

languages niche. It guarantees memory-safety 

and thread-safety despite not having a garbage 

collector, what is achieved by novel data 

ownership model. Differently to C++, the 

programmer can be sure that no dereferencing of 

null pointer nor accessing out of range will 

happen during the program run. Thread safety is 

an important requirement in simulating multi-

agent models, as dedicating separate threads for 

every agent is a natural approach. Rust supports 

template implementation using powerful 

procedural macros and trait system allowing 

generic early-bound function implementation. It 

also supports creating objects with late bound 

functions when performance can be traded for 

runtime flexibility. The combination of safety and 

performance features has allowed Rust to gain 

growing share in system development and data 

science backend. These qualities were decisive in 

technology selection for the presented library. 

Game Theory Model 

Library is designed to model conflict problems 

presentable as game in extensive form (Binmore, 

2007) (Ameljańczyk, 1980). �-player game in 

extensive form can be represented by graph 

 � = ��, �, Φ	, where � is the set of possible 

game states, � is a set of possible actions and 

Φ is function mapping each action (graph edge) 


 ∈ � to an ordered pair of states ��
, �

	 ∈ �� 

stating that 
 can be performed in state �
 leading 

game to state �

. Each of the game states is either 

intermediate state when one player can perform 

action, or terminal state when the game is 

finished. Randomness can be modelled by 

introducing additional player called chance that 

performs his actions with random distribution.  

In games with imperfect information, some game 

states are indistinguishable from each other from 

the point of view of some agent; a set of such 

states is called information set. States in the same 

information set share known parameters of game 

state but differ in parameters that are not known 

to a player. One can tell what current information 

set is, but not in which state precisely. The set of 

information sets of player � ∈ � will be 

denoted ��. It is worth to note that information 

set being a set of states is mathematical 

construction; practical implementation does not 

have to physically include a collection of states 

but simply not include all data or use its 

approximation.  

Players select their actions following their policy 

or strategy. Common policy is defined as a 

function of state �: � → � ∪⊥ returning action 
 

or none symbol when no action is possible. Since 

the library presented in this paper uses the term 

information sets when relating to states viewed 

by an agent, it is more appropriate to define 

policy formally as a function of information set: 

��: �� → � ∪⊥.  

Game defines payoff function that returns game 

result evaluation. Typically, the domain for payoff 

function is the set of possible states �. Some 

games define payoff only for final game states 

(e.g., classical chess), while others track players’ 

scores dynamically. The latter presents a more 

generic approach as the first one can be 

transformed into it by defining payoffs in 

intermediate states as zero or some other neutral 

value. Intermediate payoffs allow the calculation 

of rewards as the difference between payoffs 

evaluated after and before acting.  

Infrastructure Abstraction 

Game model is built similarly like reinforcement 

learning solution described by Sutton and 

Barto (2018) consisting of: 

• Environment - a game controlling entity 

responsible for collecting agents' 

actions, translating game's state and 

producing observations and rewards for 

agents. 

• Agents - entities representing players in 

game, they observe changes in 

information set, perform actions and 

collect rewards. Agents may represent 

players with differently speciJied goals 

and, depending on game, may beneJit 

from cooperation. 
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The core principle of the presented design is the 

thread separation of agents and environment; 

communication between entities is done via 

thread synchronisation mechanisms or network 

protocols. Although the diagram of data flow 

between agents and environment presented on 

Figure 1 seems analogous to one-agent problem, 

existence of multiple agents introduces several 

issues to be addressed. 

 

Fig 1: Model scheme of reinforcement learning 

Firstly, when creating a multi-agent game model, 

one must take player ordering in consideration - 

to which the agent sends control and who expects 

action at certain moment from. Turn-based 

games define their own order; however, some 

games may expect simultaneous agent 

movement. Simultaneous actions can be 

modelled as ordered sequence. However, in 

order to preserve fairness, observations are 

distributed only after every agent authorized to 

perform action in time step has done so. 

Currently, only turn-based (one player at time) 

game flow is supported and simultaneous model 

support is to be implemented in the future.  

Secondly, exact observation may differ across 

agents. Depending on game, not every action 

must have fully visible consequences for other 

players, these consequences may be observed 

later or even not be observed at all. Therefore, it 

is expected for the environment to produce 

observation updates in an independent manner 

for different agents. What is more, one player's 

action may produce varying observations for 

different agents. In some game models, after 

agent taking an action, he might see several 

observations before he is able to act again - these 

observations are produced by the environment 

while proceeding other players' actions. 

Similarly, agent might witness several rewards 

between his subsequent actions, as they are 

issued be the environment as payoff estimation 

or calculation changes. From the agent's point of 

view, the game step is measured since his 

committing action until the time point just before 

his next action, therefore the reward for step is 

sum of partial rewards issued by the 

environment in this time interval. 

Game Domain 

The key difference between PettingZoo and 

Amfiteatr libraries is communication between 

agents and environment.  PettingZoo features 

two main API templates - AEC (Agent 

Environment Cycle) and Parallel API; both 

PettingZoo’s APIs define interface for 

environment. There is no standard API for 

agents, and no automatic orchestration of 

entities is proposed. Amfiteatr resolves entity 

interaction via data protocol defined by game 

domain. Game domain collects types commonly 

agreed by every agent and environment on. With 

defined domain, abstract messages types are 

automatically derived. Currently, the following 

parameters form domain: 

• AgentId	 -	Type used to identify agents, 

usually it will be number, enumeration 

variant or string. Every agent must be 

provided with unique id, as it is used by 

the environment to select 

communication channels. 

• ActionType	- Represents player's action 

in game, every acceptable action must be 

representable as this type. Not every 

possible action of ActionType must be 

available (legal) for a particular agent at 

a particular step - in asymmetric games 

some actions may be allowed for some 

players and never allowed for others. 

• UpdateType - Represents data that are 

produced by the environment as 

observation. Every possible observation 
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must be representable as this type. 

Similarly, not every observation in this 

format may be always accepted by a 

particular agent, issuing improper 

observation should cause error on the 

side of the agent. 

• UniversalReward - Universally agreed 

payoff type. For evaluation purpose, it 

has several arithmetical requirements 

such as property of adding, subtracting 

and comparing. Usually, it is deJined as a 

numeric value, yet it can be a different 

structure, provided that the said 

arithmetical requirements are met. 

• GameErrorType - Type for descripting 

internal game errors. These errors may 

be produced by the environment and 

agents validating actions or 

observations during state transitions. 

Their main purpose is for debugging 

models and controlling Jlow when game 

rules have been violated. 

 

Game state, information sets are not defined in 

game domain. Although those data structures 

must implement certain traits constrained by 

game domain to be compatible with game data 

protocol.  

Naturally, it is possible to create separate 

threaded agents communicating with the 

environment using PettingZoo, yet thread 

synchronization and data transfer are currently 

out of the scope of library. Symmetrically, in 

Amfiteatr, traits implemented to build automatic 

game model can be used execute model step-by-

step with lower-level interface, but automatic 

run with protocol is more native approach here.  

 

Communication between Entities 

 

With game domain defining game types as in 

abstract, data protocol is defined. Agents send 

messages of type AgentMessage informing about 

their actions, observed errors, or inform about 

disconnecting. The environment sends domain 

dependent messages EnvironmentMessage 

including rewards, observations, and error 

information; it also controls game flow with 

selecting agents to take actions and ending game. 

Each agent may be running on the same machine 

as the environment or may be delegated to other 

instance.  Therefore, the medium for 

communication may differ regarding the model 

implemented; what is more, it may be expected 

to run some agents locally and some remotely. 

This leads to the introduction of trait interface for 

communication endpoint. The implementation of 

endpoint is required to send and receive 

adequate protocol messages via attached 

medium. Error in mediums must be captured and 

handled by endpoint implementation. Endpoint 

interface is type safe, as the agent's endpoint can 

only send AgentMessage defined by domain, and, 

when receiving, can only produce 

EnvironmentMessage or produce appropriate 

error. 

 

Primary proposed endpoint uses standard inter-

thread communication channel mpsc::channel. 

The advantages of this channel are its safety and 

speed, as it does not convert data during transit. 

The disadvantage of this implementation is its 

forced locality, as it is a thread communication 

mechanism and not a network protocol. 

 

Network communication endpoint requires data 

serialization and deserialization when in move. 

Experimentally implemented TCP endpoint 

serializes in-memory message to binary  data 

chunk, The chunk is being sent over TCP protocol 

to paired endpoint which then deserializes data 

reconstructing original in-memory message.  to. 

Serialization and deserialization of messages is 

done in endpoint implementation. Conveniently, 

serialization methods can be automatically 

derived for most data types using existing 

serialization libraries e.g.  serde (2024) and 

speedy (2024). Example of serialization of 

military Protocol Data Units (Committee D.I.S.S 

and others, 1998) has already been done by Scott 

et al. (2020). The construction of game domain 

over Protocol Data Units might be subject of a 

future implementation, as a step towards 

building military purpose models , and in future 

domain parameters compatible with standard 

might be released. 

Flow of Multiplayer Game 

Game session or simulation involving multiple 

actors needs to define how players interact and 

influence game state. In this section, the concept 

used in Amfiteatr is described and compared to 

design behind in PettingZoo (Terry et al., 2021). 

In both libraries, the central point of the game is 

environment, which performs state transition 

producing observation updates and rewards for 

agents. The core difference lays in the way the 

agents communicate with the environment. 

PettingZoo standardizes programmer API for the 

environment to invoke game step and retrieve 

observations. Typical game session is organized 

in loop over agents collecting observations, 

selecting action and stepping forward the 

environment. The agent logic is not specified. The 

environment does not run automatically, each 

game must be “stepped through”. This approach 

has the advantage of being straight-forward and 
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simple. In contrast, developed Amfiteatr library 

takes the approach of the environment and 

agents running in separated threads and 

communicating with defined protocol. Every 

step, the environment chooses one agent and 

communicates YourMove signal to him; the agent 

then chooses action and communicates it to the 

environment. Then the environment makes a 

step which sets game in the new state and 

decides how the change is observed by any agent 

and constructs observation data for agents. One 

of the principles of Amfiteatr library is to provide 

a generic implementation of the environment 

and agents with pluggable logic for internal 

states and decision making while preserving type 

safety guarantees of the model. With 

environment’s state, agents’ information sets and 

policies implementing certain interfaces (called 

traits in Rust), it is possible to orchestrate them 

in separate threads and ensure they follow type 

safe protocol derived from game domain.  

Partial Observations and Rewards 

Each environment step triggered by one player’s 

action results in the execution of game state 

transition. During state transition, observations 

and rewards are generated for agents (not 

limited to the next playing agent). It might be 

convenient to issue observations for certain 

agents after any player’s action instead of in the 

moment just before his act time. In such case 

during interval appearing to a player as his single 

step – between his one action and his next action, 

he could observe facts several times and receive 

several rewards. An agent is then expected to 

apply observations (updates) chronologically 

and calculate reward as a sum of partial rewards 

received during the step. This approach enforces 

on agent supporting partial observations and 

rewards. Each game step, the environment may 

but does not have to issue an observation for 

certain player. Construction of environment 

issuing single observation and reward to the next 

playing agent is still possible. This versatility 

helps implementing game logic for games with 

large and complicated states. When observation 

is defined as current visible world (like state of 

chess board), partial rewards have no practical 

use; however, observation may be defined 

as some description of world changes (e.g. “unit 

A is observed to move north”); what is more, 

different agents can observe different things. In 

models with one-to-one mapping actions to 

observations, the environment would have to 

track individual observation stack since their last 

observation for every agent. Complicated games 

with asymmetric observation could benefit from 

concepts of partial observations. As stated 

before, partial observations and rewards are 

optional features and models with one 

observation per agent action are possible; thus, 

the Amfiteatr approach is compatible with AEC 

template environment of PettingZoo where 

agents observe their position in game just before 

their next action. 

The example game flow clip is presented on 

sequence diagram on Figure 2; the diagram 

features environment providing Agent 1 with two 

observations and two reward updates. In this 

example, Agent 1 step is measured since his first 

taking action to the next one. His reward is the 

sum of partial rewards Reward 1A and Reward 

1B. His information set is updated with stacking 

observations: �
 = update(update(�, observation 

1a), observation 1b). The approach used in 

PettingZoo AEC environment template would 

produce just one reward and observation for 

Agent 1 – just before he takes second action 

(Reward 1B, Observation 1B). The approach of 

AEC can be translated into the one proposed in 

the Amfiteatr library  ensuring the game step 

produces feedback only for the next player. 
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Fig 2: Sequence diagram for two player game with inter step feedback. 

Generic Agent Construction  

Model simulation in Amfiteatr requires agents to 

run automatically from the start of the game to 

the end. The automation of agent requires the 

ability to select action and update his information 

set. The current library version includes two 

generic implementations with pluggable 

information set and policy logic. One keeping 

track of game trajectory for further analysis (i.e. 

applying experience to learning policy 

algorithm), and the other for use in situation 

where experience collection is not needed (pre-

trained agents or using explicitly defined policy). 

The generic implementation of Agent utilizes 

structures of information set, policy and 

communication endpoint. With these elements 

defined, the autonomous agent can be compiled. 

Information Sets 

As stated in game theory introduction, 

information set represents knowledge of agent 

regarding game state. Information set is not 

locked by the game’s domain parameters. This 

allows building models with asymmetric agents 

with different view on the game. Some agents 

might be constructed to use raw observation 

data, and some might process observed data 

to calculate or approximate interesting unknown 

data. Compatibility with game protocol requires 

all information sets to meet certain programmer 

interface. Compatibility is enforced by the 

implementation of InformationSet trait, with the 

most crucial function of updating state. Update 

function must accept UpdateType defined in 

domain parameters and perform change on 

information set, producing error if the update 

cannot be applied. Error would then be 

automatically communicated by the agent to the 

environment. Error situations, in information set 

transition, should generally not occur in finished 

models, as update was previously issued by the 

environment, what suggests that either updated 

of information set or environment state 

processing has problems in implementation. 

Policies 

Policy represents function outputting action 

given the players’ information set. Policy is 

implemented as a structure implementing Policy 

trait with associated type representing 

information set. Trait requires the 

implementation of select_action() function and 

producing action of type defined in domain 

parameters. As stated in the theoretical 

introduction, in some cases, agent may not have 

any possible action to choose, therefore policy 

output is wrapped in Option type, enforcing 

output consumer to check if action is not None. 

Library is supposed to support the construction 

of reinforcement learning models. Typical 
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implementation of learning agent involves using 

artificial neural networks to construct policy 

function. Commonly used policies can be 

classified as value-based type, policy gradient 

type, or as a hybrid of those two types. Critic type 

policies evaluate expected quality of actions and 

selects one with the best expected outcome. 

Example of such algorithm is Q-learning 

(Watkins and Dayan, 1992), and its neural 

network implementation DQN (Deep Q-learning 

Network) used in Mnih et al. (2013). Q-learning 

technique tries to learn parameters to estimate 

Q-function, given by equation:  

 

��
∗ ��, 
	 � � � γ��

∗��
, 

	 

The value of Q-function for policy π, information 

set �, and action 
 is immediate reward � 

summed with �  !
"#$ in the next observed 

information set following the same policy π for 

the rest of the game. Future rewards are 

multiplied by discount factor γ, typically γ % 1 

and it is responsible for inflation of rewards and 

making policy convergent. DQN uses neural 

network to estimate Q-function, therefore the 

application of that policy depends on the 

possibility of representing information set and 

action as tensor input to DQN, as presented on 

Figure 3. 

 

Fig 3: Scheme of DQN 

Alternative family is made of policy gradient 

methods. These policies rather than evaluate the 

quality of particular actions, they analyse state 

(information set) and output distribution of 

actions to sample. If action space is a continuous 

policy, then output of network can be used as 

action realisation. For discrete action space, 

problem can be viewed as a categorisation 

problem, where information set is “labelled” 

with adequate action. The learning process 

involves updating policy parameters, 

so it produces distributions favouring better 

actions. Example of critic policy is algorithm 

REINFORCE introduced by Williams (1992) and 

further discussed by Lehmann (2024). Algorithm 

works by updating network parameters 

according to policy gradient theorem. The 

implementation of neural network-based policy 

gradient methods requires that information set is 

representable as tensor just like in value-based 

policies. Action does not need to be convertible to 

tensor, however it must be able to construct from 

the sample taken from the output of the network. 

The scheme of neural network-backed policy 

gradient is presented on Figure 4. 

 

Fig 4: Scheme of policy gradient neural network on example of A2C 
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Currently, library provides generic 

implementations for DQN and A2C (Advantage 

Actor Critic) policies. These policies can be 

parametrized with needed neural network 

shape, initial values and selected optimizer. They 

are implemented automatically for information 

sets and actions, provided that they implement 

needed interfaces discussed above. Both types of 

learning policies require experience collected in 

past games. Library provides generic tracing 

agent implementation that builds and stores the 

history of visited information sets, taken actions 

and collected rewards. At given time, agent can 

update one trajectory related to the current 

game; finished trajectories are stored in the 

history vector that can be used later to construct 

the batch of training data. Learning interface 

supports fitting policies to optimize payoffs 

distributed by the environment or custom values 

calculated from information set. This feature is 

meant to help modelling agents with their own 

agenda, without changing their payoff function in 

the environment. 

Performance 

Performance comparison with PettingZoo multi-

agent reinforcement learning library 

In order to measure potential performance gains 

of using Rust powered Amfiteatr library, the 

experiment using PettingZoo’s game Connect 

Four environment has been performed. For the 

experiment, the following models were built: 

• Python - PettingZoo Connect Four game 

environment with agents implemented 

in Python. 

• Wrapped - AmJiteatr model with 

environment state being a wrapper 

around original Python PettingZoo’s 

Connect Four Environment. 

• Rust – Pure AmJiteatr model with 

environment state being rewritten in 

Rust. 

• RustLight – Pure AmJiteatr model with 

environment state being rewritten in 

Rust and compiled without optional 

extensive logging in core library. 

Rust environment state implementation has 

been done preserving original operations 

without attempts to optimise code in game 

logic area. In every variant neural network 

backend used was libtorch. 

For every model template, there were 

constructed agents using Advantage Actor Critic 

(Lehmann, 2024) policy. Every launch consisted 

of 100 learning epochs, each consisting of 128 

episodes. Between each learning epoch, 100 test 

episodes were performed. Tests were performed 

for different sizes of hidden layers of neural 

network. For most of the cases, the experiment 

was launched 50 times. Due to long time of 

evaluation, Python model with layer of size 

10000 was launched 10 times. Tables 1 and 2 

present average execution time for models with 

different sizes of hidden layers of neural 

network; standard deviation is given in 

parenthesis. Table 1 is dedicated to models with 

single hidden layer and Table 2 gathers results 

for models with two hidden linear layers with 

tanh() layer between.  

 

Table 1: Execution times of models with single hidden linear layer [s]  

(standard deviation in parenthesis) 

 Layer size  

Variant 1 10 100 1000 10000 

Python 70.62 (2.39) 78.99 (0.79) 87.84 (0.60) 101.50 (0.59) 3473.97 (19.30) 

Wrapped 72.92 (3.17) 76.01 (1.52) 77.59 (1.27) 85.13 (1.23) 108.25 (5.51) 

Rust  22.44 (1.25) 24.68 (3.04) 24.52 (0.60) 28.22 (0.81) 50.13 (2.69) 

Rust Light 22.58 (2.71) 24.00 (0.53) 24.61 (0.59) 28.45 (0.91) 47.99 (2.82) 
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Table 2:  Execution times of models with two hidden linear layers [s] (standard deviation in 

parenthesis) 

  Layers size  

Variant 1,1 10,10 100,100 1000,1000 

Python 73.01 (3.37) 83.57 (0.72) 98.35 (0.64) 128.28 (3.89) 

Wrapped 70.92 (4.73) 78.16 (1.75) 80.99 (1.37) 140.81 (4.14) 

Rust  24.27 (4.61) 26.76 (2.39) 27.66 (0.71) 50.18 (3.11) 

Rust Light 23.34 (1.79) 26.26 (0.86) 27.58 (0.69) 49.82 (3.57) 

The presented results show that generally 

models built in Rust execute faster than those 

written in Python. In tested cases, Rust powered 

model with both agent and environment written 

in pure Rust was usually between 2 and 3 times 

faster than Python implementation. Amfiteatr 

wrapping of PettingZoo’s Python environment 

performs slightly better than a model in Python. 

Better performance of Rust models is coherent 

with expectation as it is a language producing 

faster programs in general; however, despite 

being a slower language, Python models benefit 

from fast tensor operations provided by low-

level libtorch implementation.  An interesting 

observation was made for a single layer size of 

10000 in Python: execution time has drastically 

grown. In additional tests, such observations 

have been observed in Rust models with a 

greater number of nodes in network. In this case, 

Python model was executed with average 5,6 

million involuntary context switches by work 

scheduler caused by time expiration of time slice, 

as contrast Rust model executed with average 

6571 involuntary context switches. All 

experiments were performed on personal 

computer without CUDA support. It is possible 

that dedicated GPU executed kernels prevent the 

occurrence of such cases. It is expected that 

differences between the execution time 

of Amfiteatr and PettingZoo models will be more 

stable in setups dedicated to machine learning.  

Performance evaluation of communication via 

mpsc channel and TCP socket 

To compare standard inter-thread channel and 

experimental communication channel via TCP 

protocol, the model for multi-armed bandit 

problem with multiple players has been built. 

The model was executed with 1, 10, 100, 200, 

300, 400 and 500 active players, performing 

action sampled from uniform distribution. Every 

TCP agent was executed on localhost, reducing 

the influence of network latency.  Due to the 

experimental state of TCP based communication 

medium, executions for 1000 and 10000 agents 

failed. The experiment was designed with 

possibly simple game with minimal game logic 

computation and used no tracing agents to 

maximalize computational ratio for 

communication operations and other. For every 

communication variant and number of active 

agents, the experiment was repeated 50 times. 

Means are presented in Table 3; standard 

deviations are placed in parenthesis.  
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Table 3: Model evaluation times for different communication mediums [s]  

(standard deviation in parenthesis) 

 Active Agents 

Variant 1 10 100 200 300 400 500 

std::mpsc 
0.12 

(<0.01) 

0.14 

(<0.01) 

2.48 

(0.01) 

9.38 

 (0.04) 

20.92  

(0.13) 

36.80  

(0.27) 

56.70  

(0.13) 

TCP 

based 

4.10  

(0.01) 

4.21 

 (0.01) 

15.39 

 (0.07) 

48.21  

(0.21) 

142.19 

(3.70) 

255.24 

(4.93) 

393.70 

(1.42) 

 

Fig 5: Chart of execution times comparing mpsc: channel with TCP stream 

Performance experiment has shown that single 

host model executions perform better, 

significantly better than distributed. Local inter-

thread communication channel will always be 

faster. Here model mpsc::channel has performed 

about 6 times better. In some cases of models 

with great amount of game logic computation, 

the relative time cost of network communication 

may be small. However, for the majority of 

models, it is more suitable to add computational 

power to local machine that grows network 

distributed environment. Further performance 

tests on stabilized network communication 

medium might help decide whether or when it is 

beneficial to build distributed models.  

 

 

Future work 

Library is in early stage of development and 

serious amount of work is to be done yet. 

Currently, locally launched as well as network 

distributed games can be launched using game 

protocol. Repeated model execution can be 

orchestrated with local control – in single 

program controlling all actors. A protocol 

allowing synchronizing agents and environment 

in repeated execution is yet to be implemented. 

The repetition of experiments is essential in 

reinforcement learning process, therefore 

construction of distributed multi-agent 

reinforcement learning models is not yet 

supported by the library. . What is more, current 

network communication medium is not stable 

and needs more development work. Beside 

solving problems with distributed simulation, 
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more generic implementations of learning 

policies are planned. With the development of the 

library, more performance benchmarks are to be 

made, especially with a wider selection of 

hardware. Last but not least, support for parallel 

environments with similar purpose like Parallel 

API in PettingZoo is to be provided. 

Conclusion 

This paper presented the concept of Rust 

powered multi-agent reinforcement learning 

library. The presented work includes 

architecture description and benchmarks of 

game model execution related to community 

standard library. Library in current stage is fit to 

launch local reinforcement learning sessions 

of sequentially ordered agents. Performance 

benchmarks show slight performance gain in 

models compiled in Rust with the usage of 

Amfiteatr library. Comparing to PettingZoo, the 

library is in its early stage – API is not yet stable; 

fully parallel environment is yet to be built and 

the number of implemented game problems is 

much less.  Nevertheless, library might find its 

niche for specific deployments.  Thread and type 

safety provided by Rust language can be 

leveraged to build learning algorithms to solve 

decision making problems with hight reliability. 

Thus, future and more stable versions of library 

might be used in critical infrastructure and 

industry projects or by researchers willing to use 

Rust in their work. 
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