
IBIMA Publishing

Journal of Software & Systems Development

https://ibimapublishing.com/articles/JSSD/2024/340710/

Vol. 2024 (2024), Article ID 340710, 11 pages, ISSEN: 2166-0824

https://doi.org/10.5171/2024.340710

Cite this Article as: Robert JAROSZ (2024)," Towards Efficient Memory and Type Safe Modelling of Multi-agent Games:

Development of Amfiteatr - Simulation and Reinforcement Learning Tool Written in Rust ", Journal of Software &

Systems Development, Vol. 2024 (2024), Article ID 340710, https://doi.org/10.5171/2024.340710

Research Article

Towards Efficient Memory and Type Safe

Modelling of Multi-agent Games: Development

of Amfiteatr - Simulation and Reinforcement

Learning Tool Written in Rust

Robert JAROSZ

 Military University of Technology, Warsaw, Poland

 robert.jarosz@wat.edu.pl

Received date:1st april 2024; Accepted date:3 July 2024; published date: 17 September 2024

Academic Editor: Cristian Bucur

Copyright © 2024. Robert JAROSZ. Distributed under Creative Commons Attribution 4.0

International CC-BY 4.0

Introduction

Recent years have brought numerous successful

research studies in machine learning algorithms,

including reinforcement learning (RL) subarea. A

characteristic feature of reinforcement learning

is the use of experience gained from repeated

simulation, that stands in contrast with

supervised learning algorithms, which consume

arbitrarily the provided training data. The

technique of RL has proven to be very successful

in optimizing strategies in various games and

problems. That trait makes RL suitable for

optimizing game policy and robotic control.

Examples of reinforcement learning solutions

surpassing human level include mastering classic

games reported by (Silver et al., 2016 and Silver

et al., 2017) features of self-learning algorithms

for Go and chess respectively. The effectiveness

of deep reinforcement learning was also shown

playing Atari games by Mnih et al., (2013 and

2015). The most popular current libraries

Abstract

This paper presents conception and architecture description of memory and type safe library as a tool

to simulate multi-agent conflict situations with reinforcement learning support. The presented work

discusses the creation of computer models compatible with the conception of games in extensive form.

The document presents an approach addressing generic game theory problems with asymmetric

players using different information sets and policy types while maintaining type safety. The conception

of library is compared to popular PettingZoo library marking community standard for multi agent-

reinforcement learning problem. The discussed comparison addresses information flow inside models

and performance. The possibility of distributing models across network connected hosts is briefly

discussed. At the end of the paper, the current state of the library is discussed and direction for future

development is pointed.

Keywords: simulation, reinforcement-learning, Rust, multi-agent,

Journal of Software & Systems Development 2

__

Robert JAROSZ, Journal of Software & Systems Development, https://doi.org/10.5171/2024.340710

providing game environments to research on RL

agents are Python libraries Gymnasium (Towers

et al., 2023) dedicated to modelling single player

games and their multiplayer counterpart

PettingZoo (Terry et al., 2021). This paper

presents Amfiteatr - an alternative library to

build conflict situation models with support for

reinforcement learning. The main contribution of

a developed library is the usage of safety features

and better performance of Rust language to help

build effective and correct simulation and

reinforcement learning models. Beside distinct

implementation language, library features

different design of entity communication model.

Choice of Implementation Language

Developed library is aimed to maximize

execution performance preserving model safety.

For this purpose, the language Rust (Klabnik,

Nichols et al., 2024) was selected. Rust is a multi-

paradigm, low level, and high control language; it

is also a direct competitor of C++ in the system

languages niche. It guarantees memory-safety

and thread-safety despite not having a garbage

collector, what is achieved by novel data

ownership model. Differently to C++, the

programmer can be sure that no dereferencing of

null pointer nor accessing out of range will

happen during the program run. Thread safety is

an important requirement in simulating multi-

agent models, as dedicating separate threads for

every agent is a natural approach. Rust supports

template implementation using powerful

procedural macros and trait system allowing

generic early-bound function implementation. It

also supports creating objects with late bound

functions when performance can be traded for

runtime flexibility. The combination of safety and

performance features has allowed Rust to gain

growing share in system development and data

science backend. These qualities were decisive in

technology selection for the presented library.

Game Theory Model

Library is designed to model conflict problems

presentable as game in extensive form (Binmore,

2007) (Ameljańczyk, 1980). �-player game in

extensive form can be represented by graph

 � = ��, �, Φ	, where � is the set of possible

game states, � is a set of possible actions and

Φ is function mapping each action (graph edge)

 ∈ � to an ordered pair of states ��
, �

	 ∈ ��

stating that
 can be performed in state �
 leading

game to state �

. Each of the game states is either

intermediate state when one player can perform

action, or terminal state when the game is

finished. Randomness can be modelled by

introducing additional player called chance that

performs his actions with random distribution.

In games with imperfect information, some game

states are indistinguishable from each other from

the point of view of some agent; a set of such

states is called information set. States in the same

information set share known parameters of game

state but differ in parameters that are not known

to a player. One can tell what current information

set is, but not in which state precisely. The set of

information sets of player � ∈ � will be

denoted ��. It is worth to note that information

set being a set of states is mathematical

construction; practical implementation does not

have to physically include a collection of states

but simply not include all data or use its

approximation.

Players select their actions following their policy

or strategy. Common policy is defined as a

function of state �: � → � ∪⊥ returning action

or none symbol when no action is possible. Since

the library presented in this paper uses the term

information sets when relating to states viewed

by an agent, it is more appropriate to define

policy formally as a function of information set:

��: �� → � ∪⊥.

Game defines payoff function that returns game

result evaluation. Typically, the domain for payoff

function is the set of possible states �. Some

games define payoff only for final game states

(e.g., classical chess), while others track players’

scores dynamically. The latter presents a more

generic approach as the first one can be

transformed into it by defining payoffs in

intermediate states as zero or some other neutral

value. Intermediate payoffs allow the calculation

of rewards as the difference between payoffs

evaluated after and before acting.

Infrastructure Abstraction

Game model is built similarly like reinforcement

learning solution described by Sutton and

Barto (2018) consisting of:

• Environment - a game controlling entity

responsible for collecting agents'

actions, translating game's state and

producing observations and rewards for

agents.

• Agents - entities representing players in

game, they observe changes in

information set, perform actions and

collect rewards. Agents may represent

players with differently speciJied goals

and, depending on game, may beneJit

from cooperation.

3 Journal of Software & Systems Development

Robert JAROSZ, Journal of Software & Systems Development, https://doi.org/10.5171/2024.340710

The core principle of the presented design is the

thread separation of agents and environment;

communication between entities is done via

thread synchronisation mechanisms or network

protocols. Although the diagram of data flow

between agents and environment presented on

Figure 1 seems analogous to one-agent problem,

existence of multiple agents introduces several

issues to be addressed.

Fig 1: Model scheme of reinforcement learning

Firstly, when creating a multi-agent game model,

one must take player ordering in consideration -

to which the agent sends control and who expects

action at certain moment from. Turn-based

games define their own order; however, some

games may expect simultaneous agent

movement. Simultaneous actions can be

modelled as ordered sequence. However, in

order to preserve fairness, observations are

distributed only after every agent authorized to

perform action in time step has done so.

Currently, only turn-based (one player at time)

game flow is supported and simultaneous model

support is to be implemented in the future.

Secondly, exact observation may differ across

agents. Depending on game, not every action

must have fully visible consequences for other

players, these consequences may be observed

later or even not be observed at all. Therefore, it

is expected for the environment to produce

observation updates in an independent manner

for different agents. What is more, one player's

action may produce varying observations for

different agents. In some game models, after

agent taking an action, he might see several

observations before he is able to act again - these

observations are produced by the environment

while proceeding other players' actions.

Similarly, agent might witness several rewards

between his subsequent actions, as they are

issued be the environment as payoff estimation

or calculation changes. From the agent's point of

view, the game step is measured since his

committing action until the time point just before

his next action, therefore the reward for step is

sum of partial rewards issued by the

environment in this time interval.

Game Domain

The key difference between PettingZoo and

Amfiteatr libraries is communication between

agents and environment. PettingZoo features

two main API templates - AEC (Agent

Environment Cycle) and Parallel API; both

PettingZoo’s APIs define interface for

environment. There is no standard API for

agents, and no automatic orchestration of

entities is proposed. Amfiteatr resolves entity

interaction via data protocol defined by game

domain. Game domain collects types commonly

agreed by every agent and environment on. With

defined domain, abstract messages types are

automatically derived. Currently, the following

parameters form domain:

• AgentId	 -	Type used to identify agents,

usually it will be number, enumeration

variant or string. Every agent must be

provided with unique id, as it is used by

the environment to select

communication channels.

• ActionType	- Represents player's action

in game, every acceptable action must be

representable as this type. Not every

possible action of ActionType must be

available (legal) for a particular agent at

a particular step - in asymmetric games

some actions may be allowed for some

players and never allowed for others.

• UpdateType - Represents data that are

produced by the environment as

observation. Every possible observation

Journal of Software & Systems Development 4

__

Robert JAROSZ, Journal of Software & Systems Development, https://doi.org/10.5171/2024.340710

must be representable as this type.

Similarly, not every observation in this

format may be always accepted by a

particular agent, issuing improper

observation should cause error on the

side of the agent.

• UniversalReward - Universally agreed

payoff type. For evaluation purpose, it

has several arithmetical requirements

such as property of adding, subtracting

and comparing. Usually, it is deJined as a

numeric value, yet it can be a different

structure, provided that the said

arithmetical requirements are met.

• GameErrorType - Type for descripting

internal game errors. These errors may

be produced by the environment and

agents validating actions or

observations during state transitions.

Their main purpose is for debugging

models and controlling Jlow when game

rules have been violated.

Game state, information sets are not defined in

game domain. Although those data structures

must implement certain traits constrained by

game domain to be compatible with game data

protocol.

Naturally, it is possible to create separate

threaded agents communicating with the

environment using PettingZoo, yet thread

synchronization and data transfer are currently

out of the scope of library. Symmetrically, in

Amfiteatr, traits implemented to build automatic

game model can be used execute model step-by-

step with lower-level interface, but automatic

run with protocol is more native approach here.

Communication between Entities

With game domain defining game types as in

abstract, data protocol is defined. Agents send

messages of type AgentMessage informing about

their actions, observed errors, or inform about

disconnecting. The environment sends domain

dependent messages EnvironmentMessage

including rewards, observations, and error

information; it also controls game flow with

selecting agents to take actions and ending game.

Each agent may be running on the same machine

as the environment or may be delegated to other

instance. Therefore, the medium for

communication may differ regarding the model

implemented; what is more, it may be expected

to run some agents locally and some remotely.

This leads to the introduction of trait interface for

communication endpoint. The implementation of

endpoint is required to send and receive

adequate protocol messages via attached

medium. Error in mediums must be captured and

handled by endpoint implementation. Endpoint

interface is type safe, as the agent's endpoint can

only send AgentMessage defined by domain, and,

when receiving, can only produce

EnvironmentMessage or produce appropriate

error.

Primary proposed endpoint uses standard inter-

thread communication channel mpsc::channel.

The advantages of this channel are its safety and

speed, as it does not convert data during transit.

The disadvantage of this implementation is its

forced locality, as it is a thread communication

mechanism and not a network protocol.

Network communication endpoint requires data

serialization and deserialization when in move.

Experimentally implemented TCP endpoint

serializes in-memory message to binary data

chunk, The chunk is being sent over TCP protocol

to paired endpoint which then deserializes data

reconstructing original in-memory message. to.

Serialization and deserialization of messages is

done in endpoint implementation. Conveniently,

serialization methods can be automatically

derived for most data types using existing

serialization libraries e.g. serde (2024) and

speedy (2024). Example of serialization of

military Protocol Data Units (Committee D.I.S.S

and others, 1998) has already been done by Scott

et al. (2020). The construction of game domain

over Protocol Data Units might be subject of a

future implementation, as a step towards

building military purpose models , and in future

domain parameters compatible with standard

might be released.

Flow of Multiplayer Game

Game session or simulation involving multiple

actors needs to define how players interact and

influence game state. In this section, the concept

used in Amfiteatr is described and compared to

design behind in PettingZoo (Terry et al., 2021).

In both libraries, the central point of the game is

environment, which performs state transition

producing observation updates and rewards for

agents. The core difference lays in the way the

agents communicate with the environment.

PettingZoo standardizes programmer API for the

environment to invoke game step and retrieve

observations. Typical game session is organized

in loop over agents collecting observations,

selecting action and stepping forward the

environment. The agent logic is not specified. The

environment does not run automatically, each

game must be “stepped through”. This approach

has the advantage of being straight-forward and

5 Journal of Software & Systems Development

Robert JAROSZ, Journal of Software & Systems Development, https://doi.org/10.5171/2024.340710

simple. In contrast, developed Amfiteatr library

takes the approach of the environment and

agents running in separated threads and

communicating with defined protocol. Every

step, the environment chooses one agent and

communicates YourMove signal to him; the agent

then chooses action and communicates it to the

environment. Then the environment makes a

step which sets game in the new state and

decides how the change is observed by any agent

and constructs observation data for agents. One

of the principles of Amfiteatr library is to provide

a generic implementation of the environment

and agents with pluggable logic for internal

states and decision making while preserving type

safety guarantees of the model. With

environment’s state, agents’ information sets and

policies implementing certain interfaces (called

traits in Rust), it is possible to orchestrate them

in separate threads and ensure they follow type

safe protocol derived from game domain.

Partial Observations and Rewards

Each environment step triggered by one player’s

action results in the execution of game state

transition. During state transition, observations

and rewards are generated for agents (not

limited to the next playing agent). It might be

convenient to issue observations for certain

agents after any player’s action instead of in the

moment just before his act time. In such case

during interval appearing to a player as his single

step – between his one action and his next action,

he could observe facts several times and receive

several rewards. An agent is then expected to

apply observations (updates) chronologically

and calculate reward as a sum of partial rewards

received during the step. This approach enforces

on agent supporting partial observations and

rewards. Each game step, the environment may

but does not have to issue an observation for

certain player. Construction of environment

issuing single observation and reward to the next

playing agent is still possible. This versatility

helps implementing game logic for games with

large and complicated states. When observation

is defined as current visible world (like state of

chess board), partial rewards have no practical

use; however, observation may be defined

as some description of world changes (e.g. “unit

A is observed to move north”); what is more,

different agents can observe different things. In

models with one-to-one mapping actions to

observations, the environment would have to

track individual observation stack since their last

observation for every agent. Complicated games

with asymmetric observation could benefit from

concepts of partial observations. As stated

before, partial observations and rewards are

optional features and models with one

observation per agent action are possible; thus,

the Amfiteatr approach is compatible with AEC

template environment of PettingZoo where

agents observe their position in game just before

their next action.

The example game flow clip is presented on

sequence diagram on Figure 2; the diagram

features environment providing Agent 1 with two

observations and two reward updates. In this

example, Agent 1 step is measured since his first

taking action to the next one. His reward is the

sum of partial rewards Reward 1A and Reward

1B. His information set is updated with stacking

observations: �
 = update(update(�, observation

1a), observation 1b). The approach used in

PettingZoo AEC environment template would

produce just one reward and observation for

Agent 1 – just before he takes second action

(Reward 1B, Observation 1B). The approach of

AEC can be translated into the one proposed in

the Amfiteatr library ensuring the game step

produces feedback only for the next player.

Journal of Software & Systems Development 6

__

Robert JAROSZ, Journal of Software & Systems Development, https://doi.org/10.5171/2024.340710

Fig 2: Sequence diagram for two player game with inter step feedback.

Generic Agent Construction

Model simulation in Amfiteatr requires agents to

run automatically from the start of the game to

the end. The automation of agent requires the

ability to select action and update his information

set. The current library version includes two

generic implementations with pluggable

information set and policy logic. One keeping

track of game trajectory for further analysis (i.e.

applying experience to learning policy

algorithm), and the other for use in situation

where experience collection is not needed (pre-

trained agents or using explicitly defined policy).

The generic implementation of Agent utilizes

structures of information set, policy and

communication endpoint. With these elements

defined, the autonomous agent can be compiled.

Information Sets

As stated in game theory introduction,

information set represents knowledge of agent

regarding game state. Information set is not

locked by the game’s domain parameters. This

allows building models with asymmetric agents

with different view on the game. Some agents

might be constructed to use raw observation

data, and some might process observed data

to calculate or approximate interesting unknown

data. Compatibility with game protocol requires

all information sets to meet certain programmer

interface. Compatibility is enforced by the

implementation of InformationSet trait, with the

most crucial function of updating state. Update

function must accept UpdateType defined in

domain parameters and perform change on

information set, producing error if the update

cannot be applied. Error would then be

automatically communicated by the agent to the

environment. Error situations, in information set

transition, should generally not occur in finished

models, as update was previously issued by the

environment, what suggests that either updated

of information set or environment state

processing has problems in implementation.

Policies

Policy represents function outputting action

given the players’ information set. Policy is

implemented as a structure implementing Policy

trait with associated type representing

information set. Trait requires the

implementation of select_action() function and

producing action of type defined in domain

parameters. As stated in the theoretical

introduction, in some cases, agent may not have

any possible action to choose, therefore policy

output is wrapped in Option type, enforcing

output consumer to check if action is not None.

Library is supposed to support the construction

of reinforcement learning models. Typical

7 Journal of Software & Systems Development

Robert JAROSZ, Journal of Software & Systems Development, https://doi.org/10.5171/2024.340710

implementation of learning agent involves using

artificial neural networks to construct policy

function. Commonly used policies can be

classified as value-based type, policy gradient

type, or as a hybrid of those two types. Critic type

policies evaluate expected quality of actions and

selects one with the best expected outcome.

Example of such algorithm is Q-learning

(Watkins and Dayan, 1992), and its neural

network implementation DQN (Deep Q-learning

Network) used in Mnih et al. (2013). Q-learning

technique tries to learn parameters to estimate

Q-function, given by equation:

��
∗ ��,
	 � � � γ��

∗��
,

	

The value of Q-function for policy π, information

set �, and action
 is immediate reward �

summed with � !
"#$ in the next observed

information set following the same policy π for

the rest of the game. Future rewards are

multiplied by discount factor γ, typically γ % 1

and it is responsible for inflation of rewards and

making policy convergent. DQN uses neural

network to estimate Q-function, therefore the

application of that policy depends on the

possibility of representing information set and

action as tensor input to DQN, as presented on

Figure 3.

Fig 3: Scheme of DQN

Alternative family is made of policy gradient

methods. These policies rather than evaluate the

quality of particular actions, they analyse state

(information set) and output distribution of

actions to sample. If action space is a continuous

policy, then output of network can be used as

action realisation. For discrete action space,

problem can be viewed as a categorisation

problem, where information set is “labelled”

with adequate action. The learning process

involves updating policy parameters,

so it produces distributions favouring better

actions. Example of critic policy is algorithm

REINFORCE introduced by Williams (1992) and

further discussed by Lehmann (2024). Algorithm

works by updating network parameters

according to policy gradient theorem. The

implementation of neural network-based policy

gradient methods requires that information set is

representable as tensor just like in value-based

policies. Action does not need to be convertible to

tensor, however it must be able to construct from

the sample taken from the output of the network.

The scheme of neural network-backed policy

gradient is presented on Figure 4.

Fig 4: Scheme of policy gradient neural network on example of A2C

Journal of Software & Systems Development 8

__

Robert JAROSZ, Journal of Software & Systems Development, https://doi.org/10.5171/2024.340710

Currently, library provides generic

implementations for DQN and A2C (Advantage

Actor Critic) policies. These policies can be

parametrized with needed neural network

shape, initial values and selected optimizer. They

are implemented automatically for information

sets and actions, provided that they implement

needed interfaces discussed above. Both types of

learning policies require experience collected in

past games. Library provides generic tracing

agent implementation that builds and stores the

history of visited information sets, taken actions

and collected rewards. At given time, agent can

update one trajectory related to the current

game; finished trajectories are stored in the

history vector that can be used later to construct

the batch of training data. Learning interface

supports fitting policies to optimize payoffs

distributed by the environment or custom values

calculated from information set. This feature is

meant to help modelling agents with their own

agenda, without changing their payoff function in

the environment.

Performance

Performance comparison with PettingZoo multi-

agent reinforcement learning library

In order to measure potential performance gains

of using Rust powered Amfiteatr library, the

experiment using PettingZoo’s game Connect

Four environment has been performed. For the

experiment, the following models were built:

• Python - PettingZoo Connect Four game

environment with agents implemented

in Python.

• Wrapped - AmJiteatr model with

environment state being a wrapper

around original Python PettingZoo’s

Connect Four Environment.

• Rust – Pure AmJiteatr model with

environment state being rewritten in

Rust.

• RustLight – Pure AmJiteatr model with

environment state being rewritten in

Rust and compiled without optional

extensive logging in core library.

Rust environment state implementation has

been done preserving original operations

without attempts to optimise code in game

logic area. In every variant neural network

backend used was libtorch.

For every model template, there were

constructed agents using Advantage Actor Critic

(Lehmann, 2024) policy. Every launch consisted

of 100 learning epochs, each consisting of 128

episodes. Between each learning epoch, 100 test

episodes were performed. Tests were performed

for different sizes of hidden layers of neural

network. For most of the cases, the experiment

was launched 50 times. Due to long time of

evaluation, Python model with layer of size

10000 was launched 10 times. Tables 1 and 2

present average execution time for models with

different sizes of hidden layers of neural

network; standard deviation is given in

parenthesis. Table 1 is dedicated to models with

single hidden layer and Table 2 gathers results

for models with two hidden linear layers with

tanh() layer between.

Table 1: Execution times of models with single hidden linear layer [s]

(standard deviation in parenthesis)

 Layer size

Variant 1 10 100 1000 10000

Python 70.62 (2.39) 78.99 (0.79) 87.84 (0.60) 101.50 (0.59) 3473.97 (19.30)

Wrapped 72.92 (3.17) 76.01 (1.52) 77.59 (1.27) 85.13 (1.23) 108.25 (5.51)

Rust 22.44 (1.25) 24.68 (3.04) 24.52 (0.60) 28.22 (0.81) 50.13 (2.69)

Rust Light 22.58 (2.71) 24.00 (0.53) 24.61 (0.59) 28.45 (0.91) 47.99 (2.82)

9 Journal of Software & Systems Development

Robert JAROSZ, Journal of Software & Systems Development, https://doi.org/10.5171/2024.340710

Table 2: Execution times of models with two hidden linear layers [s] (standard deviation in

parenthesis)

 Layers size

Variant 1,1 10,10 100,100 1000,1000

Python 73.01 (3.37) 83.57 (0.72) 98.35 (0.64) 128.28 (3.89)

Wrapped 70.92 (4.73) 78.16 (1.75) 80.99 (1.37) 140.81 (4.14)

Rust 24.27 (4.61) 26.76 (2.39) 27.66 (0.71) 50.18 (3.11)

Rust Light 23.34 (1.79) 26.26 (0.86) 27.58 (0.69) 49.82 (3.57)

The presented results show that generally

models built in Rust execute faster than those

written in Python. In tested cases, Rust powered

model with both agent and environment written

in pure Rust was usually between 2 and 3 times

faster than Python implementation. Amfiteatr

wrapping of PettingZoo’s Python environment

performs slightly better than a model in Python.

Better performance of Rust models is coherent

with expectation as it is a language producing

faster programs in general; however, despite

being a slower language, Python models benefit

from fast tensor operations provided by low-

level libtorch implementation. An interesting

observation was made for a single layer size of

10000 in Python: execution time has drastically

grown. In additional tests, such observations

have been observed in Rust models with a

greater number of nodes in network. In this case,

Python model was executed with average 5,6

million involuntary context switches by work

scheduler caused by time expiration of time slice,

as contrast Rust model executed with average

6571 involuntary context switches. All

experiments were performed on personal

computer without CUDA support. It is possible

that dedicated GPU executed kernels prevent the

occurrence of such cases. It is expected that

differences between the execution time

of Amfiteatr and PettingZoo models will be more

stable in setups dedicated to machine learning.

Performance evaluation of communication via

mpsc channel and TCP socket

To compare standard inter-thread channel and

experimental communication channel via TCP

protocol, the model for multi-armed bandit

problem with multiple players has been built.

The model was executed with 1, 10, 100, 200,

300, 400 and 500 active players, performing

action sampled from uniform distribution. Every

TCP agent was executed on localhost, reducing

the influence of network latency. Due to the

experimental state of TCP based communication

medium, executions for 1000 and 10000 agents

failed. The experiment was designed with

possibly simple game with minimal game logic

computation and used no tracing agents to

maximalize computational ratio for

communication operations and other. For every

communication variant and number of active

agents, the experiment was repeated 50 times.

Means are presented in Table 3; standard

deviations are placed in parenthesis.

Journal of Software & Systems Development 10

__

Robert JAROSZ, Journal of Software & Systems Development, https://doi.org/10.5171/2024.340710

Table 3: Model evaluation times for different communication mediums [s]

(standard deviation in parenthesis)

 Active Agents

Variant 1 10 100 200 300 400 500

std::mpsc
0.12

(<0.01)

0.14

(<0.01)

2.48

(0.01)

9.38

 (0.04)

20.92

(0.13)

36.80

(0.27)

56.70

(0.13)

TCP

based

4.10

(0.01)

4.21

 (0.01)

15.39

 (0.07)

48.21

(0.21)

142.19

(3.70)

255.24

(4.93)

393.70

(1.42)

Fig 5: Chart of execution times comparing mpsc: channel with TCP stream

Performance experiment has shown that single

host model executions perform better,

significantly better than distributed. Local inter-

thread communication channel will always be

faster. Here model mpsc::channel has performed

about 6 times better. In some cases of models

with great amount of game logic computation,

the relative time cost of network communication

may be small. However, for the majority of

models, it is more suitable to add computational

power to local machine that grows network

distributed environment. Further performance

tests on stabilized network communication

medium might help decide whether or when it is

beneficial to build distributed models.

Future work

Library is in early stage of development and

serious amount of work is to be done yet.

Currently, locally launched as well as network

distributed games can be launched using game

protocol. Repeated model execution can be

orchestrated with local control – in single

program controlling all actors. A protocol

allowing synchronizing agents and environment

in repeated execution is yet to be implemented.

The repetition of experiments is essential in

reinforcement learning process, therefore

construction of distributed multi-agent

reinforcement learning models is not yet

supported by the library. . What is more, current

network communication medium is not stable

and needs more development work. Beside

solving problems with distributed simulation,

11 Journal of Software & Systems Development

Robert JAROSZ, Journal of Software & Systems Development, https://doi.org/10.5171/2024.340710

more generic implementations of learning

policies are planned. With the development of the

library, more performance benchmarks are to be

made, especially with a wider selection of

hardware. Last but not least, support for parallel

environments with similar purpose like Parallel

API in PettingZoo is to be provided.

Conclusion

This paper presented the concept of Rust

powered multi-agent reinforcement learning

library. The presented work includes

architecture description and benchmarks of

game model execution related to community

standard library. Library in current stage is fit to

launch local reinforcement learning sessions

of sequentially ordered agents. Performance

benchmarks show slight performance gain in

models compiled in Rust with the usage of

Amfiteatr library. Comparing to PettingZoo, the

library is in its early stage – API is not yet stable;

fully parallel environment is yet to be built and

the number of implemented game problems is

much less. Nevertheless, library might find its

niche for specific deployments. Thread and type

safety provided by Rust language can be

leveraged to build learning algorithms to solve

decision making problems with hight reliability.

Thus, future and more stable versions of library

might be used in critical infrastructure and

industry projects or by researchers willing to use

Rust in their work.

References

• Ameljańczyk, A. (1980) ‘Teoria gier i

optymalizacja wektorowa’, WAT, Warszawa

[Preprint].

• Binmore, K. (2007) Game theory: a very

short introduction. OUP Oxford.

• Committee, D.I.S.S. and others (1998) ‘IEEE

standard for distributed interactive

simulation-application protocols’, IEEE

Standard, 1278, pp. 1–52.

• Klabnik, S., Nichols, C. and Community, R.

(2024) The Rust Programming Language.

Available at: https://doc.rust-

lang.org/stable/book/.

• Lehmann, M. (2024) ‘The DeJinitive Guide to

Policy Gradients in Deep Reinforcement

Learning: Theory, Algorithms and

Implementations’, arXiv preprint

arXiv:2401.13662 [Preprint].

• Mnih, V. et al. (2013) ‘Playing atari with deep

reinforcement learning’, arXiv preprint

arXiv:1312.5602 [Preprint].

• Mnih, V. et al. (2015) ‘Human-level control

through deep reinforcement learning’,

nature, 518(7540), pp. 529–533.

• Scott, N.W. et al. (2020) ‘Using Serde to

Serialize and Deserialize DIS PDUs’, in 2020

International Conference on Computational

Science and Computational Intelligence

(CSCI), pp. 1425–1428.

• ‘serde’ (serialization/deserialization

library). Available at:

https://github.com/serde-rs/serde

(Accessed: 23 March 2024).

• Silver, D. et al. (2016) ‘Mastering the game of

Go with deep neural networks and tree

search’, nature, 529(7587), pp. 484–489.

• Silver, D. et al. (2017) ‘Mastering chess and

shogi by self-play with a general

reinforcement learning algorithm’, arXiv

preprint arXiv:1712.01815 [Preprint].

• speedy (no date)

https://github.com/koute/speedy. Available

at: https://github.com/koute/speedy

(Accessed: 23 March 2024).

• Sutton, R.S. and Barto, A.G. (2018)

Reinforcement learning: An introduction.

MIT press.

• Terry, J. et al. (2021) ‘Pettingzoo: Gym for

multi-agent reinforcement learning’,

Advances in Neural Information Processing

Systems, 34, pp. 15032–15043.

• Towers, M. et al. (2023) ‘Gymnasium’.

Zenodo. Available at:

https://doi.org/10.5281/zenodo.8127026.

• Watkins, C.J.C.H. and Dayan, P. (1992) ‘Q-

learning’, Machine learning, 8, pp. 279–292.

• Williams, R.J. (1992) ‘Simple statistical

gradient-following algorithms for

connectionist reinforcement learning’,

Machine learning, 8(3), pp. 229–256.

